<div class="csl-bib-body">
<div class="csl-entry">Bernkopf, M., Chaumont-Frelet, T., & Melenk, J. M. (2025). Wavenumber-explicit stability and convergence analysis of ℎ𝑝 finite element discretizations of Helmholtz problems in piecewise smooth media. <i>Mathematics of Computation</i>, <i>94</i>(351), 73–122. https://doi.org/10.1090/mcom/3958</div>
</div>
-
dc.identifier.issn
0025-5718
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/202590
-
dc.description.abstract
We present a wavenumber-explicit convergence analysis of the hp Finite Element Method applied to a class of heterogeneous Helmholtz problems with piecewise analytic coefficients at large wavenumber k. Our analysis covers the heterogeneous Helmholtz equation with Robin, exact Dirichlet-to-Neumann, and second order absorbing boundary conditions, as well as perfectly matched layers.
en
dc.language.iso
en
-
dc.publisher
AMER MATHEMATICAL SOC
-
dc.relation.ispartof
Mathematics of Computation
-
dc.subject
Convergence
en
dc.subject
finite element methods
en
dc.subject
Helmholtz problems
en
dc.subject
high- frequency problems
en
dc.subject
high-order methods
en
dc.subject
stability
en
dc.title
Wavenumber-explicit stability and convergence analysis of ℎ𝑝 finite element discretizations of Helmholtz problems in piecewise smooth media