<div class="csl-bib-body">
<div class="csl-entry">Kurz, S., Pauly, D., Praetorius, D., Repin, S., & Sebastian, D. (2021). Functional a posteriori error estimates for boundary element methods. <i>Numerische Mathematik</i>, <i>147</i>, 937–966. https://doi.org/10.1007/s00211-021-01188-6</div>
</div>
-
dc.identifier.issn
0029-599X
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/20273
-
dc.description.abstract
Functional error estimates are well-established tools for a posteriori error estimation and related adaptive mesh-refinement for the finite element method (FEM). The present work proposes a first functional error estimate for the boundary element method (BEM). One key feature is that the derived error estimates are independent of the BEM discretization and provide guaranteed lower and upper bounds for the unknown error. In particular, our analysis covers Galerkin BEM and the collocation method, what makes the approach of particular interest for scientific computations and engineering applications. Numerical experiments for the Laplace problem confirm the theoretical results.
en
dc.description.sponsorship
Fonds zur Förderung der wissenschaftlichen Forschung (FWF)
-
dc.language.iso
en
-
dc.publisher
SPRINGER HEIDELBERG
-
dc.relation.ispartof
Numerische Mathematik
-
dc.rights.uri
http://creativecommons.org/licenses/by/4.0/
-
dc.subject
adaptive mesh-refinement
en
dc.subject
boundary element method
en
dc.subject
functional a posteriori error estimate
en
dc.title
Functional a posteriori error estimates for boundary element methods