<div class="csl-bib-body">
<div class="csl-entry">Zhang, W., Gou, J., Möller, G., Zhang, S., Gao, Y., Wang, N., & Soja, B. (2024). A New Deep Learning-Assisted Global Water Vapor Stratification Model for GNSS Meteorology: Validations and Applications. <i>IEEE Transactions on Geoscience and Remote Sensing</i>. https://doi.org/10.1109/TGRS.2024.3479778</div>
</div>
-
dc.identifier.issn
0196-2892
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/203048
-
dc.description.abstract
Layer precipitable water (LPW), a water vapor product similar to precipitable water vapor (PWV), reports partial moisture content within a specified vertical range. Compared to PWV data, the latest LPW products can describe more refined distributions and variations of water vapor in the troposphere. Global Navigation Satellite Systems, as a powerful water vapor sensing tool, only provide the opportunity to retrieve all-weather PWV, not LPW products. To this end, we develop the first deep learning-assisted, global water vapor stratification (GWVS) model to estimate the GNSS LPW within any given vertical range. The proposed model is trained and tested using the global radiosonde data, with the training and testing RMSE of 0.94 and 1.10 mm for radiosonde LPW, indicating the excellent generalization of the GWVS model. Furthermore, the model is comprehensively validated using the data from the two regional GNSS networks and one global network. The RMSEs of the predicted GNSS LPW from the three GNSS networks compared to the co-located radiosonde LPW are 1.52, 1.80, and 1.54 mm, respectively. To study potential applications, we use the model-derived GNSS LPW products to calibrate Geostationary Operational Environmental Satellite-16 (GOES-16) LPW products and improve the GNSS water vapor tomography technique. Results show that the accuracy of three GOES-16 LPW products is improved by 31.3%, 23.3%, and 17.9%, respectively, and the RMSE of the tomography results is reduced from 2.28 to 1.67 g / m ³ . Both validation and application results highlight that the GWVS model retrieves the required GNSS LPW products and provides additional value for water vapor-related studies.
en
dc.language.iso
en
-
dc.publisher
IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
-
dc.relation.ispartof
IEEE Transactions on Geoscience and Remote Sensing
-
dc.subject
Deep learning
en
dc.subject
GNSS
en
dc.subject
Water vapor
en
dc.subject
Precipitable water
en
dc.subject
Radiosonde
en
dc.title
A New Deep Learning-Assisted Global Water Vapor Stratification Model for GNSS Meteorology: Validations and Applications
en
dc.type
Article
en
dc.type
Artikel
de
dc.contributor.affiliation
China University of Mining and Technology, China
-
dc.contributor.affiliation
ETH Zurich, Switzerland
-
dc.contributor.affiliation
China University of Mining and Technology, China
-
dc.contributor.affiliation
China University of Mining and Technology, China
-
dc.contributor.affiliation
China University of Mining and Technology, China
-
dc.contributor.affiliation
ETH Zurich, Switzerland
-
dc.type.category
Original Research Article
-
tuw.journal.peerreviewed
true
-
tuw.peerreviewed
true
-
wb.publication.intCoWork
International Co-publication
-
tuw.researchTopic.id
E4
-
tuw.researchTopic.id
X1
-
tuw.researchTopic.id
I8
-
tuw.researchTopic.name
Environmental Monitoring and Climate Adaptation
-
tuw.researchTopic.name
Beyond TUW-research focus
-
tuw.researchTopic.name
Sensor Systems
-
tuw.researchTopic.value
50
-
tuw.researchTopic.value
20
-
tuw.researchTopic.value
30
-
dcterms.isPartOf.title
IEEE Transactions on Geoscience and Remote Sensing
-
tuw.publication.orgunit
E120-04 - Forschungsbereich Höhere Geodäsie
-
tuw.publisher.doi
10.1109/TGRS.2024.3479778
-
dc.identifier.eissn
1558-0644
-
dc.description.numberOfPages
14
-
tuw.author.orcid
0000-0003-1243-0481
-
tuw.author.orcid
0000-0002-7599-0577
-
tuw.author.orcid
0000-0002-6153-3084
-
tuw.author.orcid
0009-0004-6003-6416
-
tuw.author.orcid
0000-0002-7010-2147
-
wb.sci
true
-
wb.sciencebranch
Geodäsie, Vermessungswesen
-
wb.sciencebranch
Informatik
-
wb.sciencebranch
Mathematik
-
wb.sciencebranch.oefos
2074
-
wb.sciencebranch.oefos
1020
-
wb.sciencebranch.oefos
1010
-
wb.sciencebranch.value
50
-
wb.sciencebranch.value
30
-
wb.sciencebranch.value
20
-
item.fulltext
no Fulltext
-
item.openairetype
research article
-
item.languageiso639-1
en
-
item.grantfulltext
none
-
item.openairecristype
http://purl.org/coar/resource_type/c_2df8fbb1
-
item.cerifentitytype
Publications
-
crisitem.author.dept
China University of Mining and Technology
-
crisitem.author.dept
ETH Zurich
-
crisitem.author.dept
E120-04 - Forschungsbereich Höhere Geodäsie
-
crisitem.author.dept
China University of Mining and Technology
-
crisitem.author.dept
E165 - Institut für Materialchemie
-
crisitem.author.dept
China University of Mining and Technology
-
crisitem.author.dept
E101 - Institut für Analysis und Scientific Computing