<div class="csl-bib-body">
<div class="csl-entry">Muth, M., Peer, M., Kleber, F., & Sablatnig, R. (2024). Maximizing Data Efficiency of HTR Models by Synthetic Text. In <i>Document Analysis Systems</i> (pp. 295–311). Springer, Cham. https://doi.org/10.1007/978-3-031-70442-0_18</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/203694
-
dc.description.abstract
The usability of synthetic handwritten text to improve machine learning models is assessed for the domain of HTR. Synthetic handwritten text is generated using an existing model based on a GAN. The output of this model is then used to train a state-of-the-art HTR model, which is then applied to recognize real datasets. While this results in a CER of 28.3% and a WER of 65.5% for line images of the IAM dataset - more than three times higher than the state-of-the-art result - our experiments show that the amount of real data in a mixed training set can be significantly reduced (70–80%) to achieve comparable CER and WER rates as with real data. Using only 10% of the training data (113 images) from the CVL dataset results in a CER of 54.5% and a WER of 88.8%, pre-training the model with synthetic data results in a CER of 14.6% and a WER of 43.4%.
en
dc.language.iso
en
-
dc.relation.ispartofseries
Lecture Notes in Computer Science
-
dc.subject
Handwritten Text Recognition
en
dc.subject
Synthetic Data
en
dc.subject
Synthetic Text
en
dc.title
Maximizing Data Efficiency of HTR Models by Synthetic Text
en
dc.type
Inproceedings
en
dc.type
Konferenzbeitrag
de
dc.relation.isbn
978-3-031-70442-0
-
dc.description.startpage
295
-
dc.description.endpage
311
-
dc.type.category
Full-Paper Contribution
-
tuw.booktitle
Document Analysis Systems
-
tuw.container.volume
14994
-
tuw.peerreviewed
true
-
tuw.relation.publisher
Springer, Cham
-
tuw.researchTopic.id
I5
-
tuw.researchTopic.name
Visual Computing and Human-Centered Technology
-
tuw.researchTopic.value
100
-
tuw.publication.orgunit
E193-01 - Forschungsbereich Computer Vision
-
tuw.publisher.doi
10.1007/978-3-031-70442-0_18
-
dc.description.numberOfPages
17
-
tuw.author.orcid
0000-0001-6843-0830
-
tuw.author.orcid
0000-0001-8351-5066
-
tuw.author.orcid
0000-0003-4195-1593
-
tuw.event.name
16th IAPR International Workshop on Document Analysis Systems (DAS 2024)
en
tuw.event.startdate
30-08-2024
-
tuw.event.enddate
31-08-2024
-
tuw.event.online
On Site
-
tuw.event.type
Event for scientific audience
-
tuw.event.place
Athen
-
tuw.event.country
GR
-
tuw.event.presenter
Kleber, Florian
-
wb.sciencebranch
Informatik
-
wb.sciencebranch
Mathematik
-
wb.sciencebranch.oefos
1020
-
wb.sciencebranch.oefos
1010
-
wb.sciencebranch.value
90
-
wb.sciencebranch.value
10
-
item.languageiso639-1
en
-
item.openairetype
conference paper
-
item.grantfulltext
none
-
item.fulltext
no Fulltext
-
item.cerifentitytype
Publications
-
item.openairecristype
http://purl.org/coar/resource_type/c_5794
-
crisitem.author.dept
E193-01 - Forschungsbereich Computer Vision
-
crisitem.author.dept
E193-01 - Forschungsbereich Computer Vision
-
crisitem.author.dept
E193 - Institut für Visual Computing and Human-Centered Technology
-
crisitem.author.orcid
0000-0001-6843-0830
-
crisitem.author.orcid
0000-0001-8351-5066
-
crisitem.author.orcid
0000-0003-4195-1593
-
crisitem.author.parentorg
E193 - Institut für Visual Computing and Human-Centered Technology
-
crisitem.author.parentorg
E193 - Institut für Visual Computing and Human-Centered Technology