<div class="csl-bib-body">
<div class="csl-entry">Langer, M., & Woracek, H. (2024). Karamata’s theorem for regularized Cauchy transforms. <i>PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS</i>, 1–61. https://doi.org/10.1017/prm.2023.128</div>
</div>
-
dc.identifier.issn
0308-2105
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/203740
-
dc.description.abstract
We prove Abelian and Tauberian theorems for regularized Cauchy transforms of positive Borel measures on the real line whose distribution functions grow at most polynomially at infinity. In particular, we relate the asymptotics of the distribution functions to the asymptotics of the regularized Cauchy transform.
en
dc.description.sponsorship
FWF - Österr. Wissenschaftsfonds
-
dc.language.iso
en
-
dc.publisher
CAMBRIDGE UNIV PRESS
-
dc.relation.ispartof
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS
-
dc.rights.uri
http://creativecommons.org/licenses/by/4.0/
-
dc.subject
Abelian theorem
en
dc.subject
Grommer-Hamburger theorem
en
dc.subject
regularized Cauchy transform
en
dc.subject
regularly varying function
en
dc.subject
Tauberian theorem
en
dc.title
Karamata's theorem for regularized Cauchy transforms