<div class="csl-bib-body">
<div class="csl-entry">Andreeva, E., Cogliati, B., Lallemand, V., Minier, M., Purnal, A., & Roy, A. (2024). Masked Iterate-Fork-Iterate: A New Design Paradigm for Tweakable Expanding Pseudorandom Function. In C. Pöpper & L. Batina (Eds.), <i>Applied Cryptography and Network Security</i> (pp. 433–459). Springer, Cham. https://doi.org/10.1007/978-3-031-54773-7_17</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/203814
-
dc.description.abstract
Many modes of operations for block ciphers or tweakable block ciphers do not require invertibility from their underlying primitive. In this work, we study fixed-length Tweakable Pseudorandom Function (TPRF) with large domain expansion, a novel primitive that can bring high security and significant performance optimizations in symmetric schemes, such as (authenticated) encryption. Our first contribution is to introduce a new design paradigm, derived from the Iterate-Fork-Iterate construction, in order to build n-to-αn-bit (α≥2), n-bit secure, domain expanding TPRF. We dub this new generic composition masked Iterate-Fork-Iterate mIFI. We then propose a concrete TPRF instantiation ButterKnife that expands an n-bit input to 8n-bit output via a public tweak and secret key. ButterKnife is built with high efficiency and security in mind. It is fully parallelizable and based on Deoxys-BC, the AES-based tweakable block cipher used in the authenticated encryption winner algorithm in the defense-in-depth category of the CAESAR competition. We analyze the resistance of ButterKnife to differential, linear, meet-in-the-middle, impossible differentials and rectangle attacks. A special care is taken to the attack scenarios made possible by the multiple branches. Our next contribution is to design and provably analyze two new TPRF-based deterministic authenticated encryption (DAE) schemes called SAFE and ZAFE that are highly efficient, parallelizable, and offer (n+min(n,t))/2 bits of security, where n, t denote respectively the input block and the tweak sizes of the underlying primitives. We further implement SAFE with ButterKnife to show that it achieves an encryption performance of 1.18 c/B for long messages on Skylake, which is 24% faster than the comparable Crypto’17 TBC-based ZAE DAE. Our second candidate ZAFE, which uses the same authentication pass as ZAE, offers a similar level of speedup. Besides, we show that ButterKnife, when used in Counter Mode, is slightly faster than AES (0.55 c/B vs 0.63 c/B on Skylake).
en
dc.description.sponsorship
FWF - Österr. Wissenschaftsfonds
-
dc.language.iso
en
-
dc.relation.ispartofseries
Lecture Notes in Computer Science
-
dc.subject
beyond-birthday-bound security
en
dc.subject
deterministic authenticated encryption
en
dc.subject
expanding primitives
en
dc.subject
tweakable pseudorandom functions
en
dc.title
Masked Iterate-Fork-Iterate: A New Design Paradigm for Tweakable Expanding Pseudorandom Function
en
dc.type
Inproceedings
en
dc.type
Konferenzbeitrag
de
dc.contributor.affiliation
Thales (France), France
-
dc.contributor.affiliation
Université de Lorraine, France
-
dc.contributor.affiliation
Université de Lorraine, France
-
dc.contributor.affiliation
KU Leuven, Belgium
-
dc.contributor.affiliation
Universität Innsbruck, Austria
-
dc.relation.isbn
978-3-031-33491-7
-
dc.relation.issn
0302-9743
-
dc.description.startpage
433
-
dc.description.endpage
459
-
dc.relation.grantno
F 8500
-
dc.type.category
Full-Paper Contribution
-
dc.relation.eissn
1611-3349
-
tuw.booktitle
Applied Cryptography and Network Security
-
tuw.container.volume
14584
-
tuw.peerreviewed
true
-
tuw.relation.publisher
Springer, Cham
-
tuw.project.title
Semantische und kryptografische Grundlagen von Informationssicherheit und Datenschutz durch modulares Design
-
tuw.researchTopic.id
I1
-
tuw.researchTopic.name
Logic and Computation
-
tuw.researchTopic.value
100
-
tuw.publication.orgunit
E192-06 - Forschungsbereich Security and Privacy
-
tuw.publisher.doi
10.1007/978-3-031-54773-7_17
-
dc.description.numberOfPages
27
-
tuw.author.orcid
0000-0003-0964-8711
-
tuw.author.orcid
0000-0002-3284-7076
-
tuw.event.name
Applied Cryptography and Network Security (ACNS 2024)