<div class="csl-bib-body">
<div class="csl-entry">Essbai, W., BOMBARDA, A., Bonfanti, S., & Gargantini, A. (2024). A Framework for Including Uncertainty in Robustness Evaluation of Bayesian Neural Network Classifiers. In <i>DeepTest ’24: Proceedings of the 5th IEEE/ACM International Workshop on Deep Learning for Testing and Testing for Deep Learning</i> (pp. 25–32). https://doi.org/10.1145/3643786.3648026</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/203874
-
dc.description.abstract
Neural networks (NNs) play a crucial role in safety-critical fields, requiring robustness assurance. Bayesian Neural Networks (BNNs) address data uncertainty, providing probabilistic outputs. However, the literature on BNN robustness assessment is still limited, mainly focusing on adversarial examples, which are often impractical in real-world applications. This paper introduces a fresh perspective on BNN classifier robustness, considering natural input variations while accounting for prediction uncertainties. Our approach excludes predictions labeled as "unknown", enabling practitioners to define alteration probabilities, penalize errors beyond a specified threshold, and tolerate varying error levels below it. We present a systematic approach for evaluating the robustness of BNNs, introducing new evaluation metrics that account for prediction uncertainty. We conduct a comparative study using two NNs - standard MLP and Bayesian MLP - on the MNIST dataset. Our results show that by leveraging estimated uncertainty, it is possible to enhance the system's robustness.
en
dc.language.iso
en
-
dc.subject
alterations
en
dc.subject
bayesian neural networks
en
dc.subject
robustness
en
dc.subject
uncertainty
en
dc.title
A Framework for Including Uncertainty in Robustness Evaluation of Bayesian Neural Network Classifiers
en
dc.type
Inproceedings
en
dc.type
Konferenzbeitrag
de
dc.contributor.affiliation
University of Bergamo, Italy
-
dc.contributor.affiliation
University of Bergamo, Italy
-
dc.contributor.affiliation
University of Bergamo, Italy
-
dc.relation.isbn
9798400705748
-
dc.relation.doi
10.1145/3643786
-
dc.description.startpage
25
-
dc.description.endpage
32
-
dc.type.category
Full-Paper Contribution
-
tuw.booktitle
DeepTest '24: Proceedings of the 5th IEEE/ACM International Workshop on Deep Learning for Testing and Testing for Deep Learning
-
tuw.peerreviewed
true
-
tuw.researchTopic.id
C4
-
tuw.researchTopic.id
C5
-
tuw.researchTopic.name
Mathematical and Algorithmic Foundations
-
tuw.researchTopic.name
Computer Science Foundations
-
tuw.researchTopic.value
30
-
tuw.researchTopic.value
70
-
tuw.publication.orgunit
E056-17 - Fachbereich Trustworthy Autonomous Cyber-Physical Systems
-
tuw.publication.orgunit
E191-01 - Forschungsbereich Cyber-Physical Systems
-
tuw.publisher.doi
10.1145/3643786.3648026
-
dc.description.numberOfPages
8
-
tuw.author.orcid
0009-0003-6205-010X
-
tuw.author.orcid
0000-0003-4244-9319
-
tuw.author.orcid
0000-0001-9679-4551
-
tuw.author.orcid
0000-0002-4035-0131
-
tuw.event.name
5th IEEE/ACM International Workshop on Deep Learning for Testing and Testing for Deep Learning
en
tuw.event.startdate
20-04-2024
-
tuw.event.enddate
20-04-2024
-
tuw.event.online
On Site
-
tuw.event.type
Event for scientific audience
-
tuw.event.country
PT
-
tuw.event.presenter
Essbai, Wasim
-
wb.sciencebranch
Informatik
-
wb.sciencebranch
Mathematik
-
wb.sciencebranch.oefos
1020
-
wb.sciencebranch.oefos
1010
-
wb.sciencebranch.value
70
-
wb.sciencebranch.value
30
-
item.openairecristype
http://purl.org/coar/resource_type/c_5794
-
item.openairetype
conference paper
-
item.fulltext
no Fulltext
-
item.languageiso639-1
en
-
item.grantfulltext
none
-
item.cerifentitytype
Publications
-
crisitem.author.dept
E191-01 - Forschungsbereich Cyber-Physical Systems