<div class="csl-bib-body">
<div class="csl-entry">Kusa, W., Styll, P., Seeliger, M., Espitia Mendoza, Ó., & Hanbury, A. (2023). DoSSIER at TREC 2023 Clinical Trials Track. In I. Soboroff (Ed.), <i>The Thirty-Second Text REtrieval Conference (TREC 2023) Conference Proceedings</i>. NIST. https://doi.org/10.34726/7159</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/203878
-
dc.identifier.uri
https://doi.org/10.34726/7159
-
dc.description.abstract
This paper describes the experimental setup and results of the DoSSIER team’s participation in the Clinical Trials Track at TREC 2023. The primary objective of this track was to identify clinical trials for which patients meet the eligibility criteria. Our approach uses pipeline-based models, including large language models (LLMs) for query expansion and entity extraction techniques to augment both queries and documents. In our pipelines, we tested two different first-stage retrieval models, followed by a neural re-ranking framework that leverages topical relevance and eligibility criteria. We add to the pipeline a GPT-3.5-based question-answering post-processing step. Our findings demonstrate that the neural reranking and subsequent LLM post-processing notably enhanced performance. Future research will focus on a comprehensive assessment of the impact of query and document representation strategies on retrieval efficacy.
en
dc.description.sponsorship
European Commission
-
dc.language.iso
en
-
dc.rights.uri
http://creativecommons.org/licenses/by-nd/4.0/
-
dc.subject
TREC Clinical Trials
en
dc.subject
clinical trials matching
en
dc.subject
information extraction
en
dc.subject
neural re-ranking
en
dc.subject
TCRR
en
dc.title
DoSSIER at TREC 2023 Clinical Trials Track
en
dc.type
Inproceedings
en
dc.type
Konferenzbeitrag
de
dc.rights.license
Creative Commons Namensnennung - Keine Bearbeitungen 4.0 International
de
dc.rights.license
Creative Commons Attribution-NoDerivatives 4.0 International
en
dc.identifier.doi
10.34726/7159
-
dc.contributor.affiliation
TU Wien, Austria
-
dc.contributor.affiliation
TU Wien, Austria
-
dc.contributor.affiliation
University of Milano-Bicocca, Italy
-
dc.contributor.editoraffiliation
Information Technology Laboratory, United States of America (the)
-
dc.relation.grantno
860721
-
dc.type.category
Full-Paper Contribution
-
tuw.booktitle
The Thirty-Second Text REtrieval Conference (TREC 2023) Conference Proceedings
-
tuw.peerreviewed
true
-
tuw.relation.publisher
NIST
-
tuw.project.title
Domänen-spezifische Systeme für Informationsextraktion und -suche
-
tuw.researchTopic.id
I4
-
tuw.researchTopic.name
Information Systems Engineering
-
tuw.researchTopic.value
100
-
tuw.publication.orgunit
E194-04 - Forschungsbereich Data Science
-
dc.identifier.libraryid
AC17350363
-
dc.description.numberOfPages
5
-
tuw.author.orcid
0000-0003-4420-4147
-
tuw.author.orcid
0000-0002-7149-5843
-
dc.rights.identifier
CC BY-ND 4.0
de
dc.rights.identifier
CC BY-ND 4.0
en
tuw.editor.orcid
0000-0003-2363-3014
-
tuw.event.name
Thirty-Second Text REtrieval Conference
en
tuw.event.startdate
14-11-2023
-
tuw.event.enddate
17-11-2023
-
tuw.event.online
Hybrid
-
tuw.event.type
Event for scientific audience
-
tuw.event.country
US
-
tuw.event.institution
NIST
-
tuw.event.presenter
Kusa, Wojciech
-
tuw.presentation.online
Online
-
tuw.event.track
Multi Track
-
wb.sciencebranch
Informatik
-
wb.sciencebranch
Wirtschaftswissenschaften
-
wb.sciencebranch.oefos
1020
-
wb.sciencebranch.oefos
5020
-
wb.sciencebranch.value
90
-
wb.sciencebranch.value
10
-
item.fulltext
with Fulltext
-
item.grantfulltext
open
-
item.mimetype
application/pdf
-
item.openairecristype
http://purl.org/coar/resource_type/c_5794
-
item.languageiso639-1
en
-
item.openaccessfulltext
Open Access
-
item.openairetype
conference paper
-
item.cerifentitytype
Publications
-
crisitem.project.funder
European Commission
-
crisitem.project.grantno
860721
-
crisitem.author.dept
E194-04 - Forschungsbereich Data Science
-
crisitem.author.dept
TU Wien, Austria
-
crisitem.author.dept
TU Wien, Austria
-
crisitem.author.dept
University of Milano-Bicocca
-
crisitem.author.dept
E194-04 - Forschungsbereich Data Science
-
crisitem.author.orcid
0000-0003-4420-4147
-
crisitem.author.orcid
0000-0002-7149-5843
-
crisitem.author.parentorg
E194 - Institut für Information Systems Engineering
-
crisitem.author.parentorg
E194 - Institut für Information Systems Engineering