<div class="csl-bib-body">
<div class="csl-entry">Ganian, R., Korchemna, V., & Szeider, S. (2024). Revisiting Causal Discovery from a Complexity-Theoretic Perspective. In K. Larson (Ed.), <i>Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence</i> (pp. 3377–3385). International Joint Conferences on Artificial Intelligence.</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/203886
-
dc.description.abstract
Causal discovery seeks to unveil causal relationships (represented as a so-called causal graph) from observational data. This paper investigates the complex relationship between the graph structure and the efficiency of constraint-based causal discovery algorithms. Our main contributions include (i) a near-tight characterization of which causal graphs admit a small d-separating set for each pair of vertices and thus can potentially be efficiently recovered by a constraint-based causal discovery algorithm, (ii) the explicit construction of a sequence of causal graphs on which the influential PC algorithm might need exponential time, although there is a small d-separating set between every pair of variables, and (iii) the formulation of a new causal discovery algorithm which achieves fixed-parameter running time by considering the maximum number of edge-disjoint paths between variables in the (undirected) super-structure as the parameter. A distinguishing feature of our investigation is that it is carried out within a more fine-grained model which more faithfully captures the infeasibility of performing accurate independence tests for large sets of conditioning variables
en
dc.language.iso
en
-
dc.subject
Knowledge Representation And Reasoning (KRR)
en
dc.subject
Computational Complexity of Reasoning
en
dc.subject
Causality
en
dc.title
Revisiting Causal Discovery from a Complexity-Theoretic Perspective
en
dc.type
Inproceedings
en
dc.type
Konferenzbeitrag
de
dc.relation.isbn
978-1-956792-04-1
-
dc.description.startpage
3377
-
dc.description.endpage
3385
-
dc.type.category
Full-Paper Contribution
-
tuw.booktitle
Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence
-
tuw.peerreviewed
true
-
tuw.relation.publisher
International Joint Conferences on Artificial Intelligence
-
tuw.researchTopic.id
I1
-
tuw.researchTopic.name
Logic and Computation
-
tuw.researchTopic.value
100
-
tuw.publication.orgunit
E192-01 - Forschungsbereich Algorithms and Complexity
-
dc.description.numberOfPages
9
-
tuw.author.orcid
0000-0002-7762-8045
-
tuw.author.orcid
0000-0001-8994-1656
-
tuw.event.name
Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)
en
tuw.event.startdate
03-08-2024
-
tuw.event.enddate
09-08-2024
-
tuw.event.online
On Site
-
tuw.event.type
Event for scientific audience
-
tuw.event.place
Jeju
-
tuw.event.country
KR
-
tuw.event.presenter
Korchemna, Viktoria
-
wb.sciencebranch
Informatik
-
wb.sciencebranch
Mathematik
-
wb.sciencebranch.oefos
1020
-
wb.sciencebranch.oefos
1010
-
wb.sciencebranch.value
80
-
wb.sciencebranch.value
20
-
item.languageiso639-1
en
-
item.openairetype
conference paper
-
item.grantfulltext
none
-
item.fulltext
no Fulltext
-
item.cerifentitytype
Publications
-
item.openairecristype
http://purl.org/coar/resource_type/c_5794
-
crisitem.author.dept
E192-01 - Forschungsbereich Algorithms and Complexity
-
crisitem.author.dept
E192-01 - Forschungsbereich Algorithms and Complexity
-
crisitem.author.dept
E192-01 - Forschungsbereich Algorithms and Complexity