<div class="csl-bib-body">
<div class="csl-entry">Daniilidis, A., & Quincampoix, M. (2024). Extending the Rademacher Theorem to Set-Valued Maps. <i>SIAM Journal on Optimization</i>, <i>34</i>(2), 1784–1798. https://doi.org/10.1137/22M1538831</div>
</div>
-
dc.identifier.issn
1052-6234
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/204026
-
dc.description.abstract
The Rademacher theorem asserts that Lipschitz continuous functions between Euclidean spaces are differentiable almost everywhere. In this work we extend this result to set-valued maps using an adequate notion of set-valued differentiability relating to convex processes. Our approach uses the Rademacher theorem but also recovers it as a special case.
en
dc.description.sponsorship
FWF - Österr. Wissenschaftsfonds
-
dc.language.iso
en
-
dc.publisher
SIAM PUBLICATIONS
-
dc.relation.ispartof
SIAM Journal on Optimization
-
dc.subject
convex process
en
dc.subject
graphical derivative
en
dc.subject
Lipschitz continuity
en
dc.subject
Rademacher theorem
en
dc.subject
set-valued map
en
dc.title
Extending the Rademacher Theorem to Set-Valued Maps