<div class="csl-bib-body">
<div class="csl-entry">Daniilidis, A., & Salas, D. (2024). Steepest Geometric Descent for Regularized Quasiconvex Functions. <i>Set-Valued and Variational Analysis</i>, <i>32</i>(3), Article 28. https://doi.org/10.1007/s11228-024-00731-5</div>
</div>
-
dc.identifier.issn
1877-0533
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/204032
-
dc.description.abstract
We establish existence of steepest descent curves emanating from almost every point of a regular locally Lipschitz quasiconvex functions, where regularity means that the sweeping process flow induced by the sublevel sets is reversible. We then use max-convolution to regularize general quasiconvex functions and obtain a result of the same nature in a more general setting.
en
dc.description.sponsorship
FWF - Österr. Wissenschaftsfonds
-
dc.language.iso
en
-
dc.publisher
SPRINGER
-
dc.relation.ispartof
Set-Valued and Variational Analysis
-
dc.subject
Max-convolution
en
dc.subject
Quasiconvex functions
en
dc.subject
Steepest descent curves
en
dc.subject
Sweeping process
en
dc.title
Steepest Geometric Descent for Regularized Quasiconvex Functions