<div class="csl-bib-body">
<div class="csl-entry">Feichtinger, G., & Wrzaczek, S. (2024). The optimal transition to a stationary population for concentrated vitality rates. <i>DEMOGRAPHIC RESEARCH</i>, <i>50</i>, 171–184. https://doi.org/10.4054/DemRes.2024.50.6</div>
</div>
-
dc.identifier.issn
1435-9871
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/204033
-
dc.description.abstract
BACKGROUND
Several countries nowadays and in the past face a birth rates below replacement level. To
what extent should the fertility of this shrinking population be increased during a given
planning period such that it approaches stationarity at the end as close as possible? Both
immediate adaptation to the replacement level as well as delaying it to the end of the
planning period are suboptimal.
METHODS
Distributed parameter optimal control theory provides an appropriate tool to ascertain the
efficient intertemporal trade-off between costly birth control and zero population growth.
RESULTS
It turns out that the optimal adaptation rate of the net reproduction rate (NRR) balances
between unacceptable adjustment costs for fertility and huge deviations of the terminal
age composition from the desired stationary one. The optimal adaptation rate is monotonically
increasing with a curvature that depends on the growth rates of the NRR, the
fertile population, and the value of newborns.
CONTRIBUTION
The paper analytically characterizes the shape of the transition to a stationary population
in an optimal way.
en
dc.language.iso
en
-
dc.publisher
MAX PLANCK INST DEMOGRAPHIC RESEARCH
-
dc.relation.ispartof
DEMOGRAPHIC RESEARCH
-
dc.subject
age-structured optimal control theory
en
dc.subject
adaptation of net reproduction rate
en
dc.subject
stationary population
en
dc.subject
transitional path
en
dc.title
The optimal transition to a stationary population for concentrated vitality rates
en
dc.type
Article
en
dc.type
Artikel
de
dc.description.startpage
171
-
dc.description.endpage
184
-
dc.type.category
Original Research Article
-
tuw.container.volume
50
-
tuw.journal.peerreviewed
true
-
tuw.peerreviewed
true
-
tuw.researchTopic.id
A4
-
tuw.researchTopic.name
Mathematical Methods in Economics
-
tuw.researchTopic.value
100
-
dcterms.isPartOf.title
DEMOGRAPHIC RESEARCH
-
tuw.publication.orgunit
E105-04 - Forschungsbereich Variationsrechnung, Dynamische Systeme und Operations Research
-
tuw.publisher.doi
10.4054/DemRes.2024.50.6
-
dc.date.onlinefirst
2024
-
dc.identifier.eissn
1435-9871
-
dc.description.numberOfPages
14
-
wb.sci
true
-
wb.sciencebranch
Informatik
-
wb.sciencebranch
Wirtschaftswissenschaften
-
wb.sciencebranch
Mathematik
-
wb.sciencebranch.oefos
1020
-
wb.sciencebranch.oefos
5020
-
wb.sciencebranch.oefos
1010
-
wb.sciencebranch.value
10
-
wb.sciencebranch.value
20
-
wb.sciencebranch.value
70
-
item.languageiso639-1
en
-
item.openairetype
research article
-
item.grantfulltext
none
-
item.fulltext
no Fulltext
-
item.cerifentitytype
Publications
-
item.openairecristype
http://purl.org/coar/resource_type/c_2df8fbb1
-
crisitem.author.dept
E105 - Institut für Stochastik und Wirtschaftsmathematik
-
crisitem.author.dept
E105 - Institut für Stochastik und Wirtschaftsmathematik