<div class="csl-bib-body">
<div class="csl-entry">Ali, S. J., & Bork, D. (2024). A Graph Language Modeling Framework for the Ontological Enrichment of Conceptual Models. In <i>Advanced Information Systems Engineering</i> (pp. 107–123). https://doi.org/10.1007/978-3-031-61057-8_7</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/204051
-
dc.description.abstract
Conceptual models (CMs) offer a structured way to organize and communicate information in information systems. However, current models lack adequate semantics of the terminology of the underlying domain model, leading to inconsistent interpretations and uses of information. Ontology-driven conceptual modeling languages provide primitives for articulating these domain notions based on the ontological categories, i.e., stereotypes put forth by upper-level (or foundational) ontologies. Existing CMs have been created using ontologically-neutral languages (e.g., UML, ER). Enriching these models with ontological categories can better support model evaluation, meaning negotiation, semantic interoperability, and complexity management. However, manual stereotyping is prohibitive, given the sheer size of the legacy base of ontologically-neutral models. In this paper, we present a graph language modeling framework for conceptual models that combines finetuning pre-trained language models to learn the vector representation of OntoUML models’ data and then perform a graph neural networks-based node classification that exploits the model’s graph structure to predict the stereotype of model classes and relations. We show with an extensive comparative evaluation that our approach significantly outperforms existing stereotype prediction approaches.
en
dc.language.iso
en
-
dc.relation.ispartofseries
Lecture Notes in Computer Science
-
dc.subject
Graph Neural Networks
en
dc.subject
Ontology-Driven Conceptual Models
en
dc.subject
Pre-trained Language Model
en
dc.subject
Representation Learning
en
dc.title
A Graph Language Modeling Framework for the Ontological Enrichment of Conceptual Models
en
dc.type
Inproceedings
en
dc.type
Konferenzbeitrag
de
dc.relation.isbn
978-3-031-61057-8
-
dc.description.startpage
107
-
dc.description.endpage
123
-
dc.type.category
Full-Paper Contribution
-
tuw.booktitle
Advanced Information Systems Engineering
-
tuw.container.volume
14663
-
tuw.peerreviewed
true
-
tuw.researchTopic.id
I4
-
tuw.researchTopic.name
Information Systems Engineering
-
tuw.researchTopic.value
100
-
tuw.publication.orgunit
E194-03 - Forschungsbereich Business Informatics
-
tuw.publisher.doi
10.1007/978-3-031-61057-8_7
-
dc.description.numberOfPages
17
-
tuw.author.orcid
0000-0003-1221-0278
-
tuw.author.orcid
0000-0001-8259-2297
-
tuw.event.name
36th International Conference on Advanced Information Systems Engineering (CAiSE 2024)
en
tuw.event.startdate
03-06-2024
-
tuw.event.enddate
07-06-2024
-
tuw.event.online
On Site
-
tuw.event.type
Event for scientific audience
-
tuw.event.place
Limassol
-
tuw.event.country
CY
-
tuw.event.presenter
Ali, Syed Juned
-
wb.sciencebranch
Informatik
-
wb.sciencebranch
Wirtschaftswissenschaften
-
wb.sciencebranch.oefos
1020
-
wb.sciencebranch.oefos
5020
-
wb.sciencebranch.value
90
-
wb.sciencebranch.value
10
-
item.languageiso639-1
en
-
item.openairetype
conference paper
-
item.grantfulltext
none
-
item.fulltext
no Fulltext
-
item.cerifentitytype
Publications
-
item.openairecristype
http://purl.org/coar/resource_type/c_5794
-
crisitem.author.dept
E194-03 - Forschungsbereich Business Informatics
-
crisitem.author.dept
E194-03 - Forschungsbereich Business Informatics
-
crisitem.author.orcid
0000-0003-1221-0278
-
crisitem.author.orcid
0000-0001-8259-2297
-
crisitem.author.parentorg
E194 - Institut für Information Systems Engineering
-
crisitem.author.parentorg
E194 - Institut für Information Systems Engineering