<div class="csl-bib-body">
<div class="csl-entry">Strohmayer, J., & Kampel, M. (2024). Data Augmentation Techniques for Cross-Domain WiFi CSI-Based Human Activity Recognition. In <i>Artificial Intelligence Applications and Innovations</i> (pp. 42–56). https://doi.org/10.1007/978-3-031-63211-2_4</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/204346
-
dc.description.abstract
The recognition of human activities using WiFi Channel State Information (CSI) facilitates contactless, long-range, and visual privacy-preserving sensing in confined indoor environments. However, the strong environmental dependence inherent to CSI presents a challenge for robust cross-domain generalization, limiting its practical applicability. Drastic environmental variations, such as transitions between line-of-sight (LOS) and non-line-of-sight (NLOS) through-wall scenarios or changes in antenna configurations, introduce a significant domain gap that can lead to severely degraded model performance at test time. To address the challenge of model generalization in these demanding cross-scenario and cross-system settings, an area that remains under-explored, this work investigates the effectiveness of data augmentation techniques commonly utilized in image-based learning when applied to WiFi CSI. We collect and make publicly available a dataset of CSI amplitude spectrograms of human activities. Utilizing this data, an ablation study is conducted in which we train activity recognition models based on the EfficientNetV2 architecture, allowing us to evaluate the impact of each augmentation on model generalization performance. The results show that, although no single technique is universally effective, specific combinations of data augmentations applied to CSI amplitude features can significantly enhance generalization in certain cross-scenario and cross-system settings.
en
dc.description.sponsorship
Wirtschaftsagentur Wien Ein Fonds der Stadt Wien
-
dc.description.sponsorship
FFG - Österr. Forschungsförderungs- gesellschaft mbH
-
dc.language.iso
en
-
dc.relation.ispartofseries
IFIP Advances in Information and Communication Technology
-
dc.subject
Channel State Information
en
dc.subject
Cross-Domain
en
dc.subject
Generalization
en
dc.subject
Human Activity Recognition
en
dc.subject
WiFi
en
dc.title
Data Augmentation Techniques for Cross-Domain WiFi CSI-Based Human Activity Recognition
en
dc.type
Inproceedings
en
dc.type
Konferenzbeitrag
de
dc.relation.isbn
978-3-031-63211-2
-
dc.description.startpage
42
-
dc.description.endpage
56
-
dc.relation.grantno
4829418
-
dc.relation.grantno
FO999905327
-
dc.type.category
Full-Paper Contribution
-
tuw.booktitle
Artificial Intelligence Applications and Innovations
-
tuw.container.volume
711
-
tuw.peerreviewed
true
-
tuw.project.title
Blindsight - Multimodale Sensorik zur menschlichen Verhaltensanalyse
-
tuw.project.title
Künstliche Intelligenz auf mobilen Endgeräten für den Einsatz im Strafvollzug
-
tuw.researchTopic.id
I5
-
tuw.researchTopic.name
Visual Computing and Human-Centered Technology
-
tuw.researchTopic.value
100
-
tuw.publication.orgunit
E193-01 - Forschungsbereich Computer Vision
-
tuw.publisher.doi
10.1007/978-3-031-63211-2_4
-
dc.description.numberOfPages
15
-
tuw.author.orcid
0000-0003-1560-4221
-
tuw.author.orcid
0000-0002-5217-2854
-
tuw.event.name
AIAI 2024 - 20th International Conference on Artificial Intelligence Applications and Innovations
en
tuw.event.startdate
27-06-2024
-
tuw.event.enddate
30-06-2024
-
tuw.event.online
On Site
-
tuw.event.type
Event for scientific audience
-
tuw.event.place
Corfu
-
tuw.event.country
GR
-
tuw.event.presenter
Strohmayer, Julian
-
wb.sciencebranch
Informatik
-
wb.sciencebranch
Mathematik
-
wb.sciencebranch.oefos
1020
-
wb.sciencebranch.oefos
1010
-
wb.sciencebranch.value
90
-
wb.sciencebranch.value
10
-
item.grantfulltext
restricted
-
item.fulltext
no Fulltext
-
item.openairecristype
http://purl.org/coar/resource_type/c_5794
-
item.cerifentitytype
Publications
-
item.languageiso639-1
en
-
item.openairetype
conference paper
-
crisitem.author.dept
E193-01 - Forschungsbereich Computer Vision
-
crisitem.author.dept
E193-01 - Forschungsbereich Computer Vision
-
crisitem.author.orcid
0000-0003-1560-4221
-
crisitem.author.orcid
0000-0002-5217-2854
-
crisitem.author.parentorg
E193 - Institut für Visual Computing and Human-Centered Technology
-
crisitem.author.parentorg
E193 - Institut für Visual Computing and Human-Centered Technology
-
crisitem.project.funder
Wirtschaftsagentur Wien Ein Fonds der Stadt Wien
-
crisitem.project.funder
FFG - Österr. Forschungsförderungs- gesellschaft mbH