<div class="csl-bib-body">
<div class="csl-entry">Vardas, I., Hunold, S., SWARTVAGHER, P., & Träff, J. L. (2024). Improved Parallel Application Performance and Makespan by Colocation and Topology-aware Process Mapping. In <i>2024 IEEE 24th International Symposium on Cluster, Cloud and Internet Computing (CCGrid)</i> (pp. 119–124). IEEE. https://doi.org/10.1109/CCGrid59990.2024.00023</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/204353
-
dc.description.abstract
In modern, deeply hierarchical HPC systems shared resource congestion can hinder the efficient use of many cores by parallel applications and degrade performance. Such congestion is often caused when parallel processes within an application that execute similar operations share the same resources. Previous research suggests using fewer cores with better process-to-core mapping can improve applications’ performance but leaves many cores unused. To utilize these cores, we colocate additional applications and map them using a topology-aware process-to-core, application-agnostic mapping algorithm. We show that these mappings significantly impact memory bandwidth and communication latency. We evaluate our approach using eight parallel applications on an HPC system with 128-core nodes, demonstrating the performance effects of mappings combined with colocation. Our goal is to determine whether colocation with topology-aware mapping is a viable alternative to typical exclusive node allocation. Our results show makespan improvements of 2.4x over exclusive allocation in an HPC system, demonstrating the potential benefits of colocation with optimized mappings.
en
dc.description.sponsorship
FWF - Österr. Wissenschaftsfonds
-
dc.description.sponsorship
FWF - Österr. Wissenschaftsfonds
-
dc.language.iso
en
-
dc.subject
High Performance Computing
en
dc.subject
Co-scheduling
en
dc.subject
Colocation
en
dc.subject
Performance Optimization
en
dc.subject
Process Mapping
en
dc.title
Improved Parallel Application Performance and Makespan by Colocation and Topology-aware Process Mapping
en
dc.type
Inproceedings
en
dc.type
Konferenzbeitrag
de
dc.relation.isbn
979-8-3503-9566-2
-
dc.relation.doi
10.1109/CCGrid59990.2024
-
dc.relation.issn
2376-4414
-
dc.description.startpage
119
-
dc.description.endpage
124
-
dc.relation.grantno
P31763-N31
-
dc.relation.grantno
P 33884-N
-
dc.type.category
Full-Paper Contribution
-
dc.relation.eissn
2993-2114
-
tuw.booktitle
2024 IEEE 24th International Symposium on Cluster, Cloud and Internet Computing (CCGrid)
-
tuw.peerreviewed
true
-
tuw.relation.publisher
IEEE
-
tuw.project.title
Algorithm Engineering für Prozess Mapping
-
tuw.project.title
Offline- und Online-Autotuning von Parallelen Programmen
-
tuw.researchTopic.id
I2
-
tuw.researchTopic.id
C5
-
tuw.researchTopic.name
Computer Engineering and Software-Intensive Systems
-
tuw.researchTopic.name
Computer Science Foundations
-
tuw.researchTopic.value
90
-
tuw.researchTopic.value
10
-
tuw.publication.orgunit
E191-04 - Forschungsbereich Parallel Computing
-
tuw.publisher.doi
10.1109/CCGrid59990.2024.00023
-
dc.description.numberOfPages
6
-
tuw.author.orcid
0000-0001-5461-556X
-
tuw.author.orcid
0000-0002-5280-3855
-
tuw.author.orcid
0000-0003-3786-7364
-
tuw.author.orcid
0000-0002-4864-9226
-
tuw.event.name
24th IEEE/ACM International Symposium on Cluster, Cloud and Internet Computing (CCGRID 2024)