<div class="csl-bib-body">
<div class="csl-entry">Da Ros, F., Di Gaspero, L., Lackner, M.-L., Musliu, N., & Winter, F. (2024). Local Search Algorithms for the Oven Scheduling Problem. In <i>GECCO ’24 Companion: Proceedings of the Genetic and Evolutionary Computation Conference Companion</i> (pp. 191–194). https://doi.org/10.1145/3638530.3654158</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/204355
-
dc.description.abstract
The Oven Scheduling Problem is an NP-hard real-world parallel batch problem arising in electronic component manufacturing. The goal of this problem is to schedule jobs on ovens while minimizing total oven runtime, job tardiness, and setup costs. To reduce oven runtime, compatible jobs can be processed simultaneously in batches. Schedules must respect oven eligibility and availability, job release dates, setup times between batches, and oven capacity constraints, as well as compatibility of job processing times and attributes. We propose and fine-tune a set of local search-based methods including Simulated Annealing, Late Acceptance Hill Climbing, and Tabu Search. A comparative analysis with solutions obtained by exact methods demonstrates the robustness of local search-based methods. We are capable of finding optimal solutions whenever the optimum is known and significantly improve the solution quality for more than half of the instances. The best local search approaches find high-quality solutions within a short amount of time (i.e., already in 30 seconds) which demonstrates their effectiveness for real-world applications.
en
dc.description.sponsorship
Christian Doppler Forschungsgesells
-
dc.language.iso
en
-
dc.subject
batch scheduling problem
en
dc.subject
local search
en
dc.subject
oven scheduling problem
en
dc.title
Local Search Algorithms for the Oven Scheduling Problem
en
dc.type
Inproceedings
en
dc.type
Konferenzbeitrag
de
dc.relation.isbn
9798400704956
-
dc.description.startpage
191
-
dc.description.endpage
194
-
dc.relation.grantno
keine Angabe
-
dc.type.category
Poster Contribution
-
tuw.booktitle
GECCO '24 Companion: Proceedings of the Genetic and Evolutionary Computation Conference Companion
-
tuw.peerreviewed
true
-
tuw.project.title
CD Labor für Künstliche Intelligenz und Optimierung in Planung und Scheduling
-
tuw.researchinfrastructure
TRIGA Mark II-Nuklearreaktor
-
tuw.researchTopic.id
C4
-
tuw.researchTopic.id
C6
-
tuw.researchTopic.name
Mathematical and Algorithmic Foundations
-
tuw.researchTopic.name
Modeling and Simulation
-
tuw.researchTopic.value
30
-
tuw.researchTopic.value
70
-
tuw.publication.orgunit
E192-02 - Forschungsbereich Databases and Artificial Intelligence
-
tuw.publisher.doi
10.1145/3638530.3654158
-
dc.description.numberOfPages
4
-
tuw.author.orcid
0000-0001-7026-4165
-
tuw.author.orcid
0000-0003-0299-6086
-
tuw.author.orcid
0000-0002-9916-9011
-
tuw.author.orcid
0000-0002-3992-8637
-
tuw.author.orcid
0000-0002-1012-1258
-
tuw.event.name
GECCO '24 Companion: Proceedings of the Genetic and Evolutionary Computation Conference Companion
en
tuw.event.startdate
14-07-2024
-
tuw.event.enddate
18-07-2024
-
tuw.event.online
Hybrid
-
tuw.event.type
Event for scientific audience
-
tuw.event.place
Melbourne
-
tuw.event.country
AU
-
tuw.event.presenter
Da Ros, Francesca
-
wb.sciencebranch
Informatik
-
wb.sciencebranch
Mathematik
-
wb.sciencebranch.oefos
1020
-
wb.sciencebranch.oefos
1010
-
wb.sciencebranch.value
80
-
wb.sciencebranch.value
20
-
item.languageiso639-1
en
-
item.openairetype
conference poster
-
item.grantfulltext
none
-
item.fulltext
no Fulltext
-
item.cerifentitytype
Publications
-
item.openairecristype
http://purl.org/coar/resource_type/c_6670
-
crisitem.author.dept
E192-02 - Forschungsbereich Databases and Artificial Intelligence
-
crisitem.author.dept
E192-02 - Forschungsbereich Databases and Artificial Intelligence
-
crisitem.author.dept
E192-02 - Forschungsbereich Databases and Artificial Intelligence