<div class="csl-bib-body">
<div class="csl-entry">Iglesias, F., Martínez, C., & Zseby, T. (2024). Impact of the Neighborhood Parameter on Outlier Detection Algorithms. In E. Chavez, B. Kimia, J. Lokoc, M. Patella, & J. Sedmidubsky (Eds.), <i>Similarity Search and Applications : 17th International Conference, SISAP 2024, Providence, RI, USA, November 4–6, 2024, Proceedings</i> (pp. 88–96). Springer. https://doi.org/10.1007/978-3-031-75823-2_8</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/204363
-
dc.description.abstract
We study the impact and stability of the neighborhood parameter for a selection of popular outlier detection algorithms: kNN, LOF, ABOD, LoOP and SDO. We conduct a sensitivity analysis with data undergoing controlled changes related to: cardinality, dimensionality, global outliers ratio, local outliers ratio, layers of density, density differences between inliers and outliers, and zonification. Experiments reveal how each type of data variation affects algorithms differently in terms of accuracy and runtimes, and discloses the performance dependence on the neighborhood parameter. This serves not only to know how to select its value, but also for assessing accuracy robustness against common data phenomena, as well as algorithms' tolerance to adjustment variations. kNN, ABOD and SDO stand out, with kNN being the most accurate, ABOD the most suitable for both global and local outliers at the same time, and SDO the most stable in the parameterization. The findings of this work are key to understanding the intrinsic behavior of algorithms based on distance and density estimations, which remain the most efficient and reliable in anomaly detection applications.
en
dc.language.iso
en
-
dc.relation.ispartofseries
Lecture Notes in Computer Science
-
dc.subject
outlier detection
-
dc.subject
anomaly detection
-
dc.subject
k-neighborhood
-
dc.title
Impact of the Neighborhood Parameter on Outlier Detection Algorithms
en
dc.type
Inproceedings
en
dc.type
Konferenzbeitrag
de
dc.contributor.affiliation
Universitat Politècnica de Catalunya, Spain
-
dc.relation.isbn
978-3-031-75823-2
-
dc.description.startpage
88
-
dc.description.endpage
96
-
dc.type.category
Full-Paper Contribution
-
tuw.booktitle
Similarity Search and Applications : 17th International Conference, SISAP 2024, Providence, RI, USA, November 4–6, 2024, Proceedings
-
tuw.container.volume
15268
-
tuw.peerreviewed
true
-
tuw.relation.publisher
Springer
-
tuw.relation.publisherplace
Cham
-
tuw.researchTopic.id
I1
-
tuw.researchTopic.id
C4
-
tuw.researchTopic.id
I2
-
tuw.researchTopic.name
Logic and Computation
-
tuw.researchTopic.name
Mathematical and Algorithmic Foundations
-
tuw.researchTopic.name
Computer Engineering and Software-Intensive Systems
-
tuw.researchTopic.value
40
-
tuw.researchTopic.value
40
-
tuw.researchTopic.value
20
-
tuw.linking
https://doi.org/10.48436/xvy1m-jwg83
-
tuw.publication.orgunit
E389-01 - Forschungsbereich Networks
-
tuw.publication.orgunit
E056-10 - Fachbereich SecInt-Secure and Intelligent Human-Centric Digital Technologies
-
tuw.publication.orgunit
E056-16 - Fachbereich SafeSeclab
-
tuw.publisher.doi
10.1007/978-3-031-75823-2_8
-
dc.description.numberOfPages
9
-
tuw.author.orcid
0000-0001-6081-969X
-
tuw.author.orcid
0000-0003-1302-9067
-
tuw.author.orcid
0000-0002-5391-467X
-
tuw.editor.orcid
0009-0006-6992-6671
-
tuw.editor.orcid
0000-0002-3558-4144
-
tuw.editor.orcid
0000-0002-7668-8521
-
tuw.event.name
17th International Conference on Similarity Search and Applications, SISAP 2024
en
dc.description.sponsorshipexternal
MOTION Project (Project PID2020-112581GB-C21), JUNON program
-
dc.relation.grantnoexternal
Spanish Ministry of Science and Innovation MCIN/AEI/10.13039/501100011033, "Ambition Research Development Centre-Val de Loire" (ARD CVL)