<div class="csl-bib-body">
<div class="csl-entry">Eller, L., Svoboda, P., & Rupp, M. (2024). Uncertainty-Aware RSRP Prediction on MDT Measurements Through Bayesian Learning. In <i>2024 IEEE International Black Sea Conference on Communications and Networking (BlackSeaCom)</i> (pp. 236–241). https://doi.org/10.1109/BlackSeaCom61746.2024.10646309</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/204544
-
dc.description.abstract
Accurate and efficient propagation modeling is a key requirement for radio planning in cellular networks. Here, deep learning has recently shown promising performance in real-world evaluations but also requires an extensive amount of diverse training data to generalize well to unseen scenarios. In this work, we study the potential of using crowdsourced RSRP measurements from real-world MDT data to train deep learning-based propagation models. We utilize an uncertainty- aware Bayesian learning approach to adequately address the noisy characteristics of such data sources. This allows us to assess not only the achievable prediction performance, but also the uncertainty estimates which enable selective prediction. Our results show that - depending on the level of detail of the provided environmental data - a MAE of ≈ 6 dB can be achieved, with a further reduction to below 5 dB when removing samples with high aleatoric uncertainty. Meanwhile, the epistemic uncertainty reliably highlights scenarios not sufficiently captured in the training data, hence compensating for the collection bias.
en
dc.description.sponsorship
Christian Doppler Forschungsgesells
-
dc.language.iso
en
-
dc.subject
4G
en
dc.subject
5G
en
dc.subject
6G
en
dc.subject
aleatoric uncertainty
en
dc.subject
bayesian learning
en
dc.subject
deep learning
en
dc.subject
epistemic uncertainty
en
dc.subject
MDT
en
dc.subject
pathloss prediction
en
dc.subject
propagation modeling
en
dc.subject
wireless networks
en
dc.title
Uncertainty-Aware RSRP Prediction on MDT Measurements Through Bayesian Learning
en
dc.type
Inproceedings
en
dc.type
Konferenzbeitrag
de
dc.description.startpage
236
-
dc.description.endpage
241
-
dc.relation.grantno
01
-
dc.type.category
Full-Paper Contribution
-
tuw.booktitle
2024 IEEE International Black Sea Conference on Communications and Networking (BlackSeaCom)
-
tuw.peerreviewed
true
-
tuw.project.title
Christian Doppler Labor für Digitale Zwillinge mit integrierter KI für nachhaltigen Funkzugang