<div class="csl-bib-body">
<div class="csl-entry">Levajković, T., Pilipović, S., Seleši, D., & Žigić, M. (2024). Stochastic evolution equations with Wick-analytic nonlinearities. <i>STOCHASTICS-AN INTERNATIONAL JOURNAL OF PROBABILITY AND STOCHASTIC PROCESSES</i>, 1–32. https://doi.org/10.1080/17442508.2024.2347844</div>
</div>
-
dc.identifier.issn
1744-2508
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/204642
-
dc.description.abstract
We study nonlinear stochastic partial differential equations with Wick-analytic type nonlinearities set in the framework of white noise analysis. These equations include the stochastic Fisher–KPP equations, stochastic Allen–Cahn, stochastic Newell–Whitehead–Segel, and stochastic Fujita–Gelfand equations. By implementing the theory of (Formula presented.) semigroups and evolution systems into the chaos expansion theory in infinite dimensional spaces, we prove the existence and uniqueness of solutions for this class of stochastic partial differential equations.
en
dc.language.iso
en
-
dc.publisher
TAYLOR & FRANCIS LTD
-
dc.relation.ispartof
STOCHASTICS-AN INTERNATIONAL JOURNAL OF PROBABILITY AND STOCHASTIC PROCESSES
-
dc.subject
C0−semigroup
en
dc.subject
infinitesimal generator
en
dc.subject
stochastic nonlinear evolution equations
en
dc.subject
Weighted Hide spaces
en
dc.subject
Wick product
en
dc.title
Stochastic evolution equations with Wick-analytic nonlinearities