<div class="csl-bib-body">
<div class="csl-entry">Affolter, N. C. (2024). Möbius Invariant Y-systems (Cluster Structures) for Miquel Dynamics. <i>International Mathematics Research Notices</i>, Article rnae237. https://doi.org/10.1093/imrn/rnae237</div>
</div>
-
dc.identifier.issn
1073-7928
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/204643
-
dc.description.abstract
Miquel dynamics is a discrete time dynamics for circle patterns, which relies on Miquel’s six circle theorem. Previous work shows that the evolution of the circle centers satisfy the dSKP equation on the octahedral lattice. As a consequence, Miquel dynamics is a discrete integrable system. Moreover, Miquel dynamics give rise to a real-valued cluster structure. The evolution of the cluster variables under Miquel dynamics is also called a Y-system in the discrete integrable systems community. If the Y-system is real positive-valued then the circle pattern is accompanied by an invariant dimer model, an exactly solvable model studied in statistical physics. However, while circle patterns are Möbius invariant, the circle centers and the Y-system are not Möbius invariant, which violates the so called transformation group principle. In this article we show that half the intersection points satisfy the dSKP equation as well, and we introduce two new real-valued Y-systems for Miquel dynamics that involve only the intersection points. Therefore, the new Y-systems are Möbius invariant, and thus satisfy the transformation group principle. We also show that the circle centers and intersection points combined satisfy the dSKP equation on the 4-dimensional octahedral lattice. In addition, we present two more complex-valued Y-systems for Miquel dynamics, which are real-valued in and only in the case of integrable circle patterns. We also investigate the special cases of harmonic embeddings and s-embeddings, which relate to the spanning tree and Ising model, respectively.
en
dc.language.iso
en
-
dc.publisher
OXFORD UNIV PRESS
-
dc.relation.ispartof
International Mathematics Research Notices
-
dc.subject
Möbius geometry
en
dc.subject
Miquel dynamics
en
dc.subject
dSKP equation
en
dc.subject
Y-system
en
dc.subject
Cluster Algebra
en
dc.subject
Dimer model
en
dc.subject
Circle pattern
en
dc.subject
t-embedding
en
dc.title
Möbius Invariant Y-systems (Cluster Structures) for Miquel Dynamics
en
dc.type
Article
en
dc.type
Artikel
de
dc.type.category
Original Research Article
-
tuw.journal.peerreviewed
true
-
tuw.peerreviewed
true
-
tuw.researchTopic.id
A3
-
tuw.researchTopic.name
Fundamental Mathematics Research
-
tuw.researchTopic.value
100
-
dcterms.isPartOf.title
International Mathematics Research Notices
-
tuw.publication.orgunit
E104-04 - Forschungsbereich Angewandte Geometrie
-
tuw.publisher.doi
10.1093/imrn/rnae237
-
dc.date.onlinefirst
2024
-
dc.identifier.articleid
rnae237
-
dc.identifier.eissn
1687-0247
-
dc.description.numberOfPages
30
-
wb.sci
true
-
wb.sciencebranch
Mathematik
-
wb.sciencebranch.oefos
1010
-
wb.sciencebranch.value
100
-
item.languageiso639-1
en
-
item.openairetype
research article
-
item.grantfulltext
restricted
-
item.fulltext
no Fulltext
-
item.cerifentitytype
Publications
-
item.openairecristype
http://purl.org/coar/resource_type/c_2df8fbb1
-
crisitem.author.dept
E104-04 - Forschungsbereich Angewandte Geometrie
-
crisitem.author.parentorg
E104 - Institut für Diskrete Mathematik und Geometrie