<div class="csl-bib-body">
<div class="csl-entry">Rockstroh, J., D’Ippolito, G., Lazzari, N., Oudshoorn, A. M., Purohit, D., Raoufi, E., & Rudolph, S. (2023). A is the B of C: (Semi)-Automatic Creation of Vossian Antonomasias. In <i>Proceedings of the Wikidata Workshop 2023 (Wikidata 2023), Athens, Greece, November 13, 2023</i>. The 4th Wikidata Workshop 2023 co-located with 22nd International Semantic Web Conference (ISWC 2023), Athens, Greece. CEUR-WS.org. http://hdl.handle.net/20.500.12708/205064</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/205064
-
dc.description.abstract
A Vossian Antonomasia (VA) is a stylistic device used to describe a person (or, more generally, an entity) in terms of a well-known person and a modifying context. For instance, the Norwegian chess world champion Magnus Carlsen was described as “the Mozart of chess” [1 ]. All VAs follow the pattern where a source (e.g., “Mozart”), is used to describe a target, (e.g., “Magnus Carlsen”), and the transfer of meaning
is “channeled” through the use of the modifier “of chess”. Although this rhetorical figure is well-known, there has not yet been a dedicated study of targeted automatic or semi-automatic methods to generate and judge the appropriateness of VAs using large Knowledge Graphs (KGs) such as Wikidata. In our work, we propose the use of vector space embeddings – both KG-based and text-based – for producing VAs. For
comparison, we contrast our findings with a purely LLM-based approach, wherein VAs are obtained from ChatGPT using a reasonably engineered prompt. We provide a publicly available GitHub repository1 for the implementation of our method and a website2 that allows testing the proposed methods.
en
dc.language.iso
en
-
dc.relation.ispartofseries
CEUR Workshop Proceedings
-
dc.subject
Creative AI
-
dc.subject
Knowledge Graphs
-
dc.subject
embeddings
-
dc.subject
Wikidata
-
dc.title
A is the B of C: (Semi)-Automatic Creation of Vossian Antonomasias
en
dc.type
Inproceedings
en
dc.type
Konferenzbeitrag
de
dc.contributor.affiliation
TU Wien, Austria
-
dc.relation.issn
1613-0073
-
dc.type.category
Full-Paper Contribution
-
tuw.booktitle
Proceedings of the Wikidata Workshop 2023 (Wikidata 2023), Athens, Greece, November 13, 2023
-
tuw.container.volume
3640
-
tuw.peerreviewed
true
-
tuw.relation.publisher
CEUR-WS.org
-
tuw.researchTopic.id
I1
-
tuw.researchTopic.name
Logic and Computation
-
tuw.researchTopic.value
100
-
tuw.publication.orgunit
E192-03 - Forschungsbereich Knowledge Based Systems
-
tuw.publication.orgunit
E056-13 - Fachbereich LogiCS
-
dc.description.numberOfPages
15
-
tuw.author.orcid
0009-0008-2320-7289
-
tuw.author.orcid
0000-0002-1601-7689
-
tuw.author.orcid
0009-0006-4638-5948
-
tuw.author.orcid
0000-0003-4565-4131
-
tuw.author.orcid
0000-0003-0744-6876
-
tuw.event.name
The 4th Wikidata Workshop 2023 co-located with 22nd International Semantic Web Conference (ISWC 2023)
en
tuw.event.startdate
06-11-2023
-
tuw.event.enddate
10-11-2023
-
tuw.event.online
On Site
-
tuw.event.type
Event for scientific audience
-
tuw.event.place
Athens
-
tuw.event.country
GR
-
tuw.event.presenter
Oudshoorn, Anouk Michelle
-
tuw.event.track
Multi Track
-
wb.sciencebranch
Informatik
-
wb.sciencebranch
Mathematik
-
wb.sciencebranch.oefos
1020
-
wb.sciencebranch.oefos
1010
-
wb.sciencebranch.value
80
-
wb.sciencebranch.value
20
-
item.openairecristype
http://purl.org/coar/resource_type/c_5794
-
item.openairetype
conference paper
-
item.fulltext
no Fulltext
-
item.languageiso639-1
en
-
item.grantfulltext
none
-
item.cerifentitytype
Publications
-
crisitem.author.dept
E192-03 - Forschungsbereich Knowledge Based Systems