<div class="csl-bib-body">
<div class="csl-entry">Nguyen, H. H., Kim, H., Crow, W., Yueh, S., Wagner, W., Lei, F., Wigneron, J.-P., Colliander, A., & Frappart, F. (2025). From theory to hydrological practice: Leveraging CYGNSS data over seven years for advanced soil moisture monitoring. <i>Remote Sensing of Environment</i>, <i>316</i>, Article 114509. https://doi.org/10.1016/j.rse.2024.114509</div>
</div>
-
dc.identifier.issn
0034-4257
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/205072
-
dc.description.abstract
Soil moisture (SM) is a key variable in hydrometeorology and climate systems. With the growing interest in capturing fine-scale SM variability for effective hydroclimate applications, spaceborne L-band bistatic radar systems using Global Navigation Satellite System-Reflectometry (GNSS-R) technology hold great potential to meet the demand for high spatiotemporal resolution SM data. Although primarily designed for tropical cyclone
monitoring purposes, the first GNSS-R satellite constellation – Cyclone Global Navigation Satellite System (CYGNSS) mission, has demonstrated the benefits of reliably monitoring diurnal SM dynamics through its initial stage of seven-year data record, thanks to its high revisit frequency at sub-daily intervals. Nevertheless, knowledge of SM retrieval from CYGNSS, particularly linked with its distinctive features, remains poorly understood, while numerous existing uncertainties and open issues can restrict its effective SM retrieval and
practical applications in the next operating stages. Unlike other review papers, this work aims to bridge this knowledge gap in CYGNSS SM retrieval by highlighting noteworthy design properties based on analyses of its real-world data, while providing a synthesis of recent advances in eliminating external uncertainty factors and improving SM inversion methods.
Despite its potential, CYGNSS SM retrieval faces both general and particular challenges arising from common issues in retrieval algorithms for conventional GNSS-R satellites and unique data limitations tied to its technical design. Scientific debates over the contributions of coherent and incoherent components in total CYGNSS signals and accurate partitioning of these two parts are defined as the key algorithm-related challenges to resolve, along with correcting attenuation effects of vegetation and surface roughness. The data-related challenges involve variations in CYGNSS’s spatial footprint, temporal frequency, and signal penetration depth across different land
surface conditions, inadequate consideration of CYGNSS incidence angle change, excessive dependence on a reference SM dataset for inversion model calibration/training or validation, and computational demands for processing rapid multi-sampling CYGNSS data retrieval. Future research pathways highlight leveraging cutting edge machine learning/deep learning algorithms to enhance CYGNSS SM data quantity and quality and better interpret its complex interactions with other hydroclimate variables. Assimilating CYGNSS SM data streams into physical models to improve the prediction of related variables and climate extremes also presents a promising
prospect.
en
dc.language.iso
en
-
dc.publisher
ELSEVIER SCIENCE INC
-
dc.relation.ispartof
Remote Sensing of Environment
-
dc.subject
CYGNSS
en
dc.subject
Soil moisture
en
dc.subject
GNSS-R
en
dc.subject
Satellite
en
dc.subject
Sub-daily
en
dc.subject
Retrieval
en
dc.subject
Machine learning
en
dc.title
From theory to hydrological practice: Leveraging CYGNSS data over seven years for advanced soil moisture monitoring
en
dc.type
Article
en
dc.type
Artikel
de
dc.contributor.affiliation
Gwangju Institute of Science and Technology, Korea (the Republic of)
-
dc.contributor.affiliation
Gwangju Institute of Science and Technology, Korea (the Republic of)
-
dc.contributor.affiliation
United States Department of Agriculture, United States of America (the)
-
dc.contributor.affiliation
National Aeronautics and Space Administration, United States of America (the)
-
dc.contributor.affiliation
University of Connecticut, United States of America (the)
-
dc.contributor.affiliation
EA - INRA Centre de Recherche de Bordeaux-Aquitaine (Villenave d'Ornon, FR)
-
dc.contributor.affiliation
Gwangju Institute of Science and Technology, Korea (the Republic of)
-
dc.contributor.affiliation
Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, France
-
dc.type.category
Original Research Article
-
tuw.container.volume
316
-
tuw.journal.peerreviewed
true
-
tuw.peerreviewed
true
-
wb.publication.intCoWork
International Co-publication
-
tuw.researchTopic.id
E4
-
tuw.researchTopic.name
Environmental Monitoring and Climate Adaptation
-
tuw.researchTopic.value
100
-
dcterms.isPartOf.title
Remote Sensing of Environment
-
tuw.publication.orgunit
E120-01 - Forschungsbereich Fernerkundung
-
tuw.publisher.doi
10.1016/j.rse.2024.114509
-
dc.identifier.articleid
114509
-
dc.identifier.eissn
1879-0704
-
dc.description.numberOfPages
22
-
tuw.author.orcid
0000-0001-7704-6857
-
tuw.author.orcid
0000-0002-0201-7717
-
tuw.author.orcid
0000-0001-5345-3618
-
tuw.author.orcid
0000-0002-4661-8274
-
wb.sci
true
-
wb.sciencebranch
Geodäsie, Vermessungswesen
-
wb.sciencebranch
Informatik
-
wb.sciencebranch
Physische Geographie
-
wb.sciencebranch.oefos
2074
-
wb.sciencebranch.oefos
1020
-
wb.sciencebranch.oefos
1054
-
wb.sciencebranch.value
70
-
wb.sciencebranch.value
15
-
wb.sciencebranch.value
15
-
item.grantfulltext
none
-
item.openairetype
research article
-
item.cerifentitytype
Publications
-
item.languageiso639-1
en
-
item.openairecristype
http://purl.org/coar/resource_type/c_2df8fbb1
-
item.fulltext
no Fulltext
-
crisitem.author.dept
E120-07 - Forschungsbereich Photogrammetrie
-
crisitem.author.dept
Gwangju Institute of Science and Technology
-
crisitem.author.dept
United States Department of Agriculture
-
crisitem.author.dept
California Institute of Technology
-
crisitem.author.dept
E120-01 - Forschungsbereich Fernerkundung
-
crisitem.author.dept
University of Connecticut
-
crisitem.author.dept
EA - INRA Centre de Recherche de Bordeaux-Aquitaine (Villenave d'Ornon, FR)
-
crisitem.author.dept
Gwangju Institute of Science and Technology
-
crisitem.author.dept
Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement