<div class="csl-bib-body">
<div class="csl-entry">Beeks, K., Sikorsky, T., Schaden, F., Pressler, M., Schneider, F. S., Koch, B., Pronebner, T. T., Werban, D. M., Hosseini, N., Kazakov, G., Welch, J. M., Sterba, J., Kraus, F., & Schumm, T. (2024). Optical transmission enhancement of ionic crystals via superionic fluoride transfer: Growing VUV-transparent radioactive crystals. <i>Physical Review B</i>, <i>109</i>(9), Article 094111. https://doi.org/10.1103/PhysRevB.109.094111</div>
</div>
-
dc.identifier.issn
2469-9950
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/205148
-
dc.description.abstract
The 8-eV first nuclear excited state in ²²⁹Th is a candidate for implementing a nuclear clock. Doping ²²⁹Th into ionic crystals such as CaF₂ is expected to suppress nonradiative decay, enabling nuclear spectroscopy and the realization of a solid-state optical clock. Yet, the inherent radioactivity of ²²⁹Th prohibits the growth of high-quality single crystals with high ²²⁹Th concentration; radiolysis causes fluoride loss, increasing absorption at 8eV. These radioactively doped crystals are thus a unique material for which a deeper analysis of the physical effects of radioactivity on growth, crystal structure, and electronic properties is presented. Following the analysis, we overcome the increase in absorption at 8eV by annealing ²²⁹Th-doped CaF₂ at 1250∘C in CF₄. This technique allows to adjust the fluoride content without crystal melting, preserving its single-crystal structure. Superionic state annealing ensures rapid fluoride distribution, creating fully transparent and radiation-hard crystals. This approach enables control over the charge state of dopants, which can be used in deep-UV optics, laser crystals, scintillators, and nuclear clocks.
en
dc.language.iso
en
-
dc.publisher
AMER PHYSICAL SOC
-
dc.relation.ispartof
Physical Review B
-
dc.subject
Th229
en
dc.title
Optical transmission enhancement of ionic crystals via superionic fluoride transfer: Growing VUV-transparent radioactive crystals