<div class="csl-bib-body">
<div class="csl-entry">Chajda, I., & Länger, H. (2023). Tense Logic Based on Finite Orthomodular Posets. <i>International Journal of Theoretical Physics</i>, <i>62</i>, Article 82. https://doi.org/10.1007/s10773-023-05327-7</div>
</div>
-
dc.identifier.issn
0020-7748
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/205732
-
dc.description.abstract
It is widely accepted that the logic of quantum mechanics is based on orthomodular posets. However, such a logic is not dynamic in the sense that it does not incorporate time dimension. To fill this gap, we introduce certain tense operators on such a logic in an inexact way, but still satisfying requirements asked on tense operators in the classical logic based on Boolean algebras or in various non-classical logics. Our construction of tense operators works perfectly when the orthomodular poset in question is finite. We investigate the behaviour of these tense operators, e.g. we show that some of them form a dynamic pair. Moreover, we prove that if the tense operators preserve one of the inexact connectives conjunction or implication as defined by the authors recently in another paper, then they also preserve the other one. Finally, we show how to construct the binary relation of time preference on a given time set provided the tense operators are given, up to equivalence induced by natural quasi-orders.
en
dc.language.iso
en
-
dc.publisher
SPRINGER/PLENUM PUBLISHERS
-
dc.relation.ispartof
International Journal of Theoretical Physics
-
dc.rights.uri
http://creativecommons.org/licenses/by/4.0/
-
dc.subject
orthomodular poset
en
dc.subject
tense operators
en
dc.subject
logic of quantum mechanics
en
dc.subject
tense logic
en
dc.subject
inexact conjunction
en
dc.subject
inexact implication
en
dc.subject
adjoint pair
en
dc.subject
time frame
en
dc.subject
dynamic pair
en
dc.title
Tense Logic Based on Finite Orthomodular Posets
en
dc.type
Article
en
dc.type
Artikel
de
dc.rights.license
Creative Commons Namensnennung 4.0 International
de
dc.rights.license
Creative Commons Attribution 4.0 International
en
dc.contributor.affiliation
Palacký University Olomouc, Czechia
-
dcterms.dateSubmitted
2022-08-23
-
dc.rights.holder
The Authors
-
dc.type.category
Original Research Article
-
tuw.container.volume
62
-
tuw.journal.peerreviewed
true
-
tuw.peerreviewed
true
-
wb.publication.intCoWork
International Co-publication
-
tuw.researchTopic.id
X1
-
tuw.researchTopic.name
Beyond TUW-research focus
-
tuw.researchTopic.value
100
-
dcterms.isPartOf.title
International Journal of Theoretical Physics
-
tuw.publication.orgunit
E104-01 - Forschungsbereich Algebra
-
tuw.publisher.doi
10.1007/s10773-023-05327-7
-
dc.date.onlinefirst
2023-04-05
-
dc.identifier.articleid
82
-
dc.identifier.eissn
1572-9575
-
dc.identifier.libraryid
AC17392862
-
dc.description.numberOfPages
19
-
tuw.author.orcid
0000-0003-3840-3879
-
dc.rights.identifier
CC BY 4.0
de
dc.rights.identifier
CC BY 4.0
en
dc.description.sponsorshipexternal
Austrian Science Fund
-
dc.description.sponsorshipexternal
Czech Science Foundation
-
dc.relation.grantnoexternal
I 4579-N
-
dc.relation.grantnoexternal
20-09869L
-
wb.sci
true
-
wb.sciencebranch
Mathematik
-
wb.sciencebranch.oefos
1010
-
wb.sciencebranch.value
100
-
item.mimetype
application/pdf
-
item.openairetype
research article
-
item.cerifentitytype
Publications
-
item.grantfulltext
open
-
item.languageiso639-1
en
-
item.openairecristype
http://purl.org/coar/resource_type/c_2df8fbb1
-
item.openaccessfulltext
Open Access
-
item.fulltext
with Fulltext
-
crisitem.author.dept
Palacký University Olomouc
-
crisitem.author.dept
E104 - Institut für Diskrete Mathematik und Geometrie