<div class="csl-bib-body">
<div class="csl-entry">Chajda, I., & Länger, H. (2024). Algebraic structures formalizing the logic of effect algebras incorporating time dimension. <i>Mathematica Slovaca</i>, <i>74</i>(6), 1353–1368. https://doi.org/10.1515/ms-2024-0098</div>
</div>
-
dc.identifier.issn
0139-9918
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/205821
-
dc.description.abstract
Effect algebras were introduced in order to describe the structure of effects, i.e. events in quantum mechanics. They are partial algebras describing the logic behind the corresponding events. It is natural to ask how to introduce the logical connective implication in effect algebras. For lattice-ordered effect algebras this task was already solved by several authors, including the present ones. We concentrate on effect algebras that need not be lattice-ordered since these can better describe the events occurring in the quantum physical system. Although an effect algebra is only partial, we try to find a logical connective implication which is everywhere defined. But such a connective can be “unsharp” or “inexact” because its outputs for given pairs of entries need not be elements of the underlying effect algebra, but may be subsets of (mutually incomparable) maximal elements. We introduce such an implication together with its adjoint functor representing conjunction. Then we consider so-called tense operators on effect algebras. Of course, also these operators turn out to be “unsharp” in the aforementioned sense, but they are in a certain relation with the operators implication and conjunction. Finally, for given tense operators and given time set T, we describe two methods how to construct a time preference relation R on T such that the given tense operators are either comparable with or equivalent to those induced by the time frame (T, R).
en
dc.language.iso
en
-
dc.publisher
WALTER DE GRUYTER GMBH
-
dc.relation.ispartof
Mathematica Slovaca
-
dc.subject
effect algebra
en
dc.subject
implication
en
dc.subject
adjoint operator
en
dc.subject
adjoint pair
en
dc.subject
tense operator
en
dc.subject
tense logic
en
dc.subject
time frame
en
dc.title
Algebraic structures formalizing the logic of effect algebras incorporating time dimension
en
dc.type
Article
en
dc.type
Artikel
de
dc.contributor.affiliation
Palacký University Olomouc, Czechia
-
dc.description.startpage
1353
-
dc.description.endpage
1368
-
dc.type.category
Original Research Article
-
tuw.container.volume
74
-
tuw.container.issue
6
-
tuw.journal.peerreviewed
true
-
tuw.peerreviewed
true
-
wb.publication.intCoWork
International Co-publication
-
tuw.researchTopic.id
X1
-
tuw.researchTopic.name
Beyond TUW-research focus
-
tuw.researchTopic.value
100
-
dcterms.isPartOf.title
Mathematica Slovaca
-
tuw.publication.orgunit
E104-01 - Forschungsbereich Algebra
-
tuw.publisher.doi
10.1515/ms-2024-0098
-
dc.identifier.eissn
1337-2211
-
dc.description.numberOfPages
16
-
tuw.author.orcid
0000-0003-3840-3879
-
dc.description.sponsorshipexternal
Austrian Science Fund
-
dc.description.sponsorshipexternal
IGA
-
dc.relation.grantnoexternal
I 4579-N
-
dc.relation.grantnoexternal
PrF 2023 010
-
wb.sci
true
-
wb.sciencebranch
Mathematik
-
wb.sciencebranch.oefos
1010
-
wb.sciencebranch.value
100
-
item.openairetype
research article
-
item.cerifentitytype
Publications
-
item.grantfulltext
restricted
-
item.languageiso639-1
en
-
item.openairecristype
http://purl.org/coar/resource_type/c_2df8fbb1
-
item.fulltext
no Fulltext
-
crisitem.author.dept
Palacký University Olomouc
-
crisitem.author.dept
E104 - Institut für Diskrete Mathematik und Geometrie