<div class="csl-bib-body">
<div class="csl-entry">Jüngel, A., & Wang, B. (2024). Structure-preserving semi-convex-splitting numerical scheme for a Cahn-Hilliard cross-diffusion system in lymphangiogenesis. <i>MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES</i>, <i>34</i>(10), 1905–1932. https://doi.org/10.1142/S0218202524500398</div>
</div>
-
dc.identifier.issn
0218-2025
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/206118
-
dc.description.abstract
A fully discrete semi-convex-splitting finite-element scheme with stabilization for a Cahn-Hilliard cross-diffusion system is analyzed. The system consists of parabolic fourth-order equations for the volume fraction of the fiber phase and solute concentration, modeling pre-patterning of lymphatic vessel morphology. The existence of discrete solutions is proved, and it is shown that the numerical scheme is energy stable up to stabilization, conserves the solute mass, and preserves the lower and upper bounds of the fiber phase fraction. Numerical experiments in two space dimensions using FreeFem illustrate the phase segregation and pattern formation.
en
dc.description.sponsorship
FWF - Österr. Wissenschaftsfonds
-
dc.language.iso
en
-
dc.publisher
WORLD SCIENTIFIC PUBL CO PTE LTD
-
dc.relation.ispartof
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES
-
dc.subject
Cahn-Hilliard equation
en
dc.subject
convex splitting
en
dc.subject
cross-diffusion systems
en
dc.subject
energy stability
en
dc.subject
existence of discrete solutions
en
dc.subject
finite-element method
en
dc.subject
free energy
en
dc.subject
lymphangiogenesis
en
dc.title
Structure-preserving semi-convex-splitting numerical scheme for a Cahn-Hilliard cross-diffusion system in lymphangiogenesis