<div class="csl-bib-body">
<div class="csl-entry">Chajda, I., Kolařík, M., & Länger, H. (2023). Orthomodular and Skew Orthomodular Posets. <i>Symmetry</i>, <i>15</i>(4), Article 810. https://doi.org/10.3390/sym15040810</div>
</div>
-
dc.identifier.issn
2073-8994
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/206135
-
dc.description.abstract
We present the smallest non-lattice orthomodular poset and show that it is unique up to isomorphism. Since not every Boolean poset is orthomodular, we consider the class of skew orthomodular posets previously introduced by the first and third author under the name “generalized orthomodular posets”. We show that this class contains all Boolean posets and we study its subclass consisting of horizontal sums of Boolean posets. For this purpose, we introduce the concept of a compatibility relation and the so-called commutator of two elements. We show the relationship between these concepts and introduce a kind of ternary discriminator for horizontal sums of Boolean posets. Numerous examples illuminating these concepts and results are included in the paper.
en
dc.description.sponsorship
FWF Fonds zur Förderung der wissenschaftlichen Forschung (FWF)
-
dc.language.iso
en
-
dc.publisher
MDPI
-
dc.relation.ispartof
Symmetry
-
dc.rights.uri
http://creativecommons.org/licenses/by/4.0/
-
dc.subject
smallest non-lattice orthomodular poset
en
dc.subject
skew orthomodular poset
en
dc.subject
Boolean poset
en
dc.subject
horizontal sum
en
dc.subject
compatibility relation
en
dc.subject
commutator
en
dc.subject
ternary discriminator
en
dc.title
Orthomodular and Skew Orthomodular Posets
en
dc.type
Article
en
dc.type
Artikel
de
dc.rights.license
Creative Commons Namensnennung 4.0 International
de
dc.rights.license
Creative Commons Attribution 4.0 International
en
dc.contributor.affiliation
Palacký University Olomouc, Czechia
-
dc.contributor.affiliation
Palacký University Olomouc, Czechia
-
dc.relation.grantno
I 4579-N
-
dcterms.dateSubmitted
2023-02-17
-
dc.rights.holder
The Authors
-
dc.type.category
Original Research Article
-
tuw.container.volume
15
-
tuw.container.issue
4
-
tuw.journal.peerreviewed
true
-
tuw.peerreviewed
true
-
wb.publication.intCoWork
International Co-publication
-
tuw.project.title
Die vielen Facetten der Orthomodularität
-
tuw.researchTopic.id
X1
-
tuw.researchTopic.name
Beyond TUW-research focus
-
tuw.researchTopic.value
100
-
dcterms.isPartOf.title
Symmetry
-
tuw.publication.orgunit
E104-01 - Forschungsbereich Algebra
-
tuw.publisher.doi
10.3390/sym15040810
-
dc.date.onlinefirst
2023-03-27
-
dc.identifier.articleid
810
-
dc.identifier.eissn
2073-8994
-
dc.identifier.libraryid
AC17395943
-
dc.description.numberOfPages
13
-
tuw.author.orcid
0000-0003-3840-3879
-
tuw.author.orcid
0000-0002-0641-4584
-
dc.rights.identifier
CC BY 4.0
de
dc.rights.identifier
CC BY 4.0
en
dc.description.sponsorshipexternal
Czech Science Foundation
-
dc.relation.grantnoexternal
20-09869L
-
wb.sci
true
-
wb.sciencebranch
Mathematik
-
wb.sciencebranch.oefos
1010
-
wb.sciencebranch.value
100
-
item.mimetype
application/pdf
-
item.openairetype
research article
-
item.cerifentitytype
Publications
-
item.grantfulltext
open
-
item.languageiso639-1
en
-
item.openairecristype
http://purl.org/coar/resource_type/c_2df8fbb1
-
item.openaccessfulltext
Open Access
-
item.fulltext
with Fulltext
-
crisitem.project.funder
FWF - Österr. Wissenschaftsfonds
-
crisitem.project.grantno
I 4579-N
-
crisitem.author.dept
Palacký University Olomouc
-
crisitem.author.dept
Palacký University Olomouc
-
crisitem.author.dept
E104 - Institut für Diskrete Mathematik und Geometrie