<div class="csl-bib-body">
<div class="csl-entry">Yorov, K., Skopenkov, M., & Pottmann, H. (2024). Surfaces of constant principal-curvatures ratio in isotropic geometry. <i>Beitraege Zur Algebra Und Geometrie</i>. https://doi.org/10.1007/s13366-024-00768-5</div>
</div>
-
dc.identifier.issn
0138-4821
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/206136
-
dc.description.abstract
We study surfaces with a constant ratio of principal curvatures in Euclidean and simply isotropic geometries and characterize rotational, channel, ruled, helical, and translational surfaces of this kind under some technical restrictions (the latter two cases only in isotropic geometry). We use the interlacing of various methods of differential geometry, including line geometry and Lie sphere geometry, ordinary differential equations, and elementary algebraic geometry.
en
dc.language.iso
en
-
dc.publisher
Springer
-
dc.relation.ispartof
Beitraege zur Algebra und Geometrie
-
dc.subject
53A05
en
dc.subject
53A10
en
dc.subject
53C42
en
dc.subject
Constant ratio of principal curvatures
en
dc.subject
Isotropic geometry
en
dc.subject
Minimal surfaces
en
dc.subject
Weingarten surfaces
en
dc.title
Surfaces of constant principal-curvatures ratio in isotropic geometry