<div class="csl-bib-body">
<div class="csl-entry">Kohl, L., Madreiter, T., & Ansari Chaharsoughi, F. (2024). AI-Enhanced Fault Detection Using Multi-Structured Data in Semiconductor Manufacturing. In N. Gaw, P. M. Pardalos, & M. R. Gahrooei (Eds.), <i>Multimodal and Tensor Data Analytics for Industrial Systems Improvement</i> (Vol. 211, pp. 297–312). Springer, Cham. https://doi.org/10.1007/978-3-031-53092-0_14</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/206274
-
dc.description.abstract
The semiconductor industry is growing rapidly due to its key drivers, an increased chip demand for newly emerging technologies, as well as the existing ubiquity in industry and consumer goods. The equipment necessary for the manufacturing process is at the same time extremely expensive, and production processes are highly complex. To stay competitive and prevent yield loss, manufacturers are permanently trying to optimize current fault diagnostic and classification processes based on physical sensors within the production process. To enhance current approaches, fault detection must not be limited to structured sensor data; it should also include multi-structured data sources. This chapter outlines how current fault detection processes in semiconductor manufacturing can be improved by not only analyzing structured sensor data but also by including unstructured textual data, leading to an increased uptime. A multi-step algorithm is proposed, able to improve fault detection based on extracted problem statements and solutions from historical maintenance reports for an occurred failure. The performance of the introduced approach is evaluated in a simulation-based use case in the semiconductor industry, leading to an increase of 0.5% in uptime and an improvement of 12.03% in the mean time between failure, resulting in an improved overall equipment efficiency of 2.1%.
en
dc.language.iso
en
-
dc.subject
Fault detection
en
dc.subject
Maintenance
en
dc.subject
Neural networks
en
dc.subject
Text mining
en
dc.subject
Decision support systems
en
dc.title
AI-Enhanced Fault Detection Using Multi-Structured Data in Semiconductor Manufacturing
en
dc.type
Book Contribution
en
dc.type
Buchbeitrag
de
dc.description.startpage
297
-
dc.description.endpage
312
-
dc.type.category
Edited Volume Contribution
-
tuw.booktitle
Multimodal and Tensor Data Analytics for Industrial Systems Improvement
-
tuw.container.volume
211
-
tuw.peerreviewed
true
-
tuw.book.ispartofseries
Springer Optimization and Its Applications
-
tuw.relation.publisher
Springer, Cham
-
tuw.researchTopic.id
I6
-
tuw.researchTopic.id
E6
-
tuw.researchTopic.name
Digital Transformation in Manufacturing
-
tuw.researchTopic.name
Sustainable Production and Technologies
-
tuw.researchTopic.value
50
-
tuw.researchTopic.value
50
-
tuw.publication.orgunit
E330-06 - Forschungsbereich Produktions- und Instandhaltungsmanagement
-
tuw.publisher.doi
10.1007/978-3-031-53092-0_14
-
dc.description.numberOfPages
16
-
tuw.author.orcid
0000-0002-3019-4403
-
tuw.author.orcid
0000-0002-8096-2060
-
tuw.author.orcid
0000-0002-2705-0396
-
wb.sciencebranch
Informatik
-
wb.sciencebranch
Wirtschaftswissenschaften
-
wb.sciencebranch
Sonstige Technische Wissenschaften
-
wb.sciencebranch.oefos
1020
-
wb.sciencebranch.oefos
5020
-
wb.sciencebranch.oefos
2119
-
wb.sciencebranch.value
20
-
wb.sciencebranch.value
50
-
wb.sciencebranch.value
30
-
item.languageiso639-1
en
-
item.openairetype
book part
-
item.grantfulltext
none
-
item.fulltext
no Fulltext
-
item.cerifentitytype
Publications
-
item.openairecristype
http://purl.org/coar/resource_type/c_3248
-
crisitem.author.dept
E330 - Institut für Managementwissenschaften
-
crisitem.author.dept
E330 - Institut für Managementwissenschaften
-
crisitem.author.dept
E330-06 - Forschungsbereich Produktions- und Instandhaltungsmanagement
-
crisitem.author.orcid
0000-0002-3019-4403
-
crisitem.author.orcid
0000-0002-8096-2060
-
crisitem.author.orcid
0000-0002-2705-0396
-
crisitem.author.parentorg
E300 - Fakultät für Maschinenwesen und Betriebswissenschaften
-
crisitem.author.parentorg
E300 - Fakultät für Maschinenwesen und Betriebswissenschaften