<div class="csl-bib-body">
<div class="csl-entry">Brauner, L., Hofstätter, G. C., & Ortega Moreno, O. A. (2024). <i>Lefschetz operators on convex valuations</i>. arXiv. https://doi.org/10.48550/arXiv.2402.14731</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/206646
-
dc.description.abstract
We investigate the action of Alesker's Lefschetz operators on translation invariant valuations on convex bodies. For scalar valued valuations, we describe this action on the level of Klain-Schneider functions by a Radon type transform, generalizing a result by Schuster and Wannerer. In the case of rotationally equivariant Minkowski valuations, the Lefschetz operators act on the generating function as a convolution transform. We show that the convolution kernel satisfies a Legendre type differential equation, and thus, is a strictly positive function that is smooth up to one point.
en
dc.description.sponsorship
FWF - Österr. Wissenschaftsfonds
-
dc.description.sponsorship
FWF - Österr. Wissenschaftsfonds
-
dc.language.iso
en
-
dc.subject
valuations
en
dc.subject
Lefschetz operators
en
dc.subject
Minkowski valuations
en
dc.subject
Klain-Schneider function
en
dc.subject
Radon transform
en
dc.title
Lefschetz operators on convex valuations
en
dc.type
Preprint
en
dc.type
Preprint
de
dc.identifier.arxiv
2402.14731
-
dc.contributor.affiliation
Friedrich Schiller University Jena, Germany
-
dc.relation.grantno
P31448-N35
-
dc.relation.grantno
ESP 236-N
-
tuw.project.title
Affine isoperimetrische Ungleichungen
-
tuw.project.title
Fixpunkt Probleme und isoperimetrische Ungleichungen
-
tuw.researchTopic.id
A3
-
tuw.researchTopic.name
Fundamental Mathematics Research
-
tuw.researchTopic.value
100
-
tuw.publication.orgunit
E104-07 - Forschungsbereich Geometrische Analysis
-
tuw.publisher.doi
10.48550/arXiv.2402.14731
-
dc.description.numberOfPages
37
-
tuw.author.orcid
0000-0001-9199-7106
-
tuw.publisher.server
arXiv
-
wb.sciencebranch
Mathematik
-
wb.sciencebranch.oefos
1010
-
wb.sciencebranch.value
100
-
item.openairetype
preprint
-
item.cerifentitytype
Publications
-
item.grantfulltext
none
-
item.languageiso639-1
en
-
item.openairecristype
http://purl.org/coar/resource_type/c_816b
-
item.fulltext
no Fulltext
-
crisitem.project.funder
FWF - Österr. Wissenschaftsfonds
-
crisitem.project.funder
FWF - Österr. Wissenschaftsfonds
-
crisitem.project.grantno
P31448-N35
-
crisitem.project.grantno
ESP 236-N
-
crisitem.author.dept
E104-07 - Forschungsbereich Geometrische Analysis
-
crisitem.author.dept
E104-06 - Forschungsbereich Konvexe und Diskrete Geometrie
-
crisitem.author.dept
E104-07 - Forschungsbereich Geometrische Analysis
-
crisitem.author.orcid
0000-0001-9199-7106
-
crisitem.author.parentorg
E104 - Institut für Diskrete Mathematik und Geometrie
-
crisitem.author.parentorg
E104 - Institut für Diskrete Mathematik und Geometrie
-
crisitem.author.parentorg
E104 - Institut für Diskrete Mathematik und Geometrie