<div class="csl-bib-body">
<div class="csl-entry">Stachel, H. (2024). A canal surface containing four straight lines. <i>Journal of Industrial Design and Engineering Graphics</i>, <i>19</i>(1), 39–44.</div>
</div>
-
dc.identifier.issn
1843-3766
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/206664
-
dc.description.abstract
A canal surface is the envelope of spheres with centers traversing a spatial curve called spine curve. The spheres contact the envelope along so-called characteristics, which are circles in general. If a canal surface contains two lines, then the spine curve is located on the bisector of these lines which in the case of skew lines is an orthogonal hyperbolic paraboloid. There are trivial cases of canal surfaces with infinitely many lines, the right cylinders, the right cones, and the one-sheeted hyperboloids of revolution. The only nontrivial case of a canal surface through four straight lines, that are not the limits of characteristics, is related to a Plücker conoid. The four given lines must be concyclic generators, i.e., they intersect each tangent plane of the conoid in four points lying on a circle. We are going to analyse and visualize this par ticular canal surface.
en
dc.language.iso
en
-
dc.relation.ispartof
Journal of Industrial Design and Engineering Graphics
-
dc.subject
Canal surface
en
dc.subject
concyclic generators
en
dc.subject
spine curve
en
dc.subject
Plücker’s conoid
en
dc.subject
pedal curve
en
dc.title
A canal surface containing four straight lines
en
dc.type
Article
en
dc.type
Artikel
de
dc.description.startpage
39
-
dc.description.endpage
44
-
dc.type.category
Original Research Article
-
tuw.container.volume
19
-
tuw.container.issue
1
-
tuw.journal.peerreviewed
true
-
tuw.peerreviewed
true
-
tuw.researchTopic.id
C1
-
tuw.researchTopic.name
Computational Materials Science
-
tuw.researchTopic.value
100
-
dcterms.isPartOf.title
Journal of Industrial Design and Engineering Graphics
-
tuw.publication.orgunit
E104-03 - Forschungsbereich Differentialgeometrie und geometrische Strukturen
-
dc.description.numberOfPages
6
-
tuw.author.orcid
0000-0001-5300-4978
-
wb.sciencebranch
Informatik
-
wb.sciencebranch
Mathematik
-
wb.sciencebranch.oefos
1020
-
wb.sciencebranch.oefos
1010
-
wb.sciencebranch.value
5
-
wb.sciencebranch.value
95
-
item.languageiso639-1
en
-
item.openairetype
research article
-
item.grantfulltext
none
-
item.fulltext
no Fulltext
-
item.cerifentitytype
Publications
-
item.openairecristype
http://purl.org/coar/resource_type/c_2df8fbb1
-
crisitem.author.dept
E104 - Institut für Diskrete Mathematik und Geometrie