<div class="csl-bib-body">
<div class="csl-entry">Hellmich, C., Pircher, L., Zelaya Lainez, L. H., Vulovic, A., Filipovic, N., Grünewald, T., Lichtenegger Helga, & Scheiner, S. (2024). X-Ray Physics and Micromechanics-Guided Intravoxel Analysis of microCT-Imaged Hard Tissue Engineering Scaffolds and Bone. In <i>Bioimaging in Tissue Engineering and Regeneration. Advanced Microscopy and Preclinical Imaging</i> (pp. 1–26). Springer. https://doi.org/10.1007/978-3-030-85569-7_21-1</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/206825
-
dc.description.abstract
High-resolution imaging technologies such as micro-computed tomography (CT) have not only revealed the intricate geometrical properties of biomedical materials and systems such as hard tissue engineering scaffolds, but also provided important data sources for the mechanical integrity of these systems, including implants. For the latter purpose, mechanical properties such as elasticity or strength need to be assigned to the voxels making up the CT scan. This is customarily done from back-analysis of mechanical tests performed on the entire scaffold structure, so as to downscale the overall mechanical response to that of an average solid voxel. Accordingly, local inhomogeneities remain unconsidered, and this motivates the review of a more fundamental, bottom-up-type strategy which unleashes, in an interdisciplinary fashion, important additional information “hidden” inside each and every voxel: Namely, the focus is set on resolving microstructural and nanostructural features located inside each and every voxel of a CT image, and on quantifying their effects on the voxel-specific material properties. For this purpose, the basics of X-ray physics, which allow for the translation of voxel-specific attenuation information into compositional quantities, are combined with micromechanical modeling. This provides a theoretically founded, rigorous link between material composition and mechanical properties. The feasibility and usefulness of this approach are highlighted by application examples concerning porosity and elasticity distributions throughout glass- and ceramic-based tissue engineering scaffolds, together with the results of quasi-static structural simulations performed on the geometrically and mechanically reconstructed objects. Thereafter, generalizations concerning hierarchical systems such as bone are discussed, together with the dynamic loading realm and the consideration of tissue anisotropy, also as far as interaction with implants is concerned.
en
dc.language.iso
en
-
dc.subject
High-resolution Imaging technologies
en
dc.subject
Hard Tissue Engineering
en
dc.subject
Bone
en
dc.title
X-Ray Physics and Micromechanics-Guided Intravoxel Analysis of microCT-Imaged Hard Tissue Engineering Scaffolds and Bone
en
dc.type
Book Contribution
en
dc.type
Buchbeitrag
de
dc.contributor.affiliation
University of Kragujevac, Serbia
-
dc.contributor.affiliation
University of Kragujevac, Serbia
-
dc.contributor.affiliation
Aix-Marseille Université, France
-
dc.contributor.affiliation
BOKU University, Austria
-
dc.relation.isbn
978-3-030-85569-7
-
dc.description.startpage
1
-
dc.description.endpage
26
-
dc.type.category
Edited Volume Contribution
-
tuw.booktitle
Bioimaging in Tissue Engineering and Regeneration. Advanced Microscopy and Preclinical Imaging
-
tuw.book.ispartofseries
Reference Series in Biomedical Engineering
-
tuw.relation.publisher
Springer
-
tuw.relation.publisherplace
Cham
-
tuw.researchTopic.id
I5
-
tuw.researchTopic.id
M6
-
tuw.researchTopic.id
C6
-
tuw.researchTopic.name
Visual Computing and Human-Centered Technology
-
tuw.researchTopic.name
Biological and Bioactive Materials
-
tuw.researchTopic.name
Modeling and Simulation
-
tuw.researchTopic.value
25
-
tuw.researchTopic.value
50
-
tuw.researchTopic.value
25
-
tuw.publication.orgunit
E202-01 - Forschungsbereich Festigkeitslehre und Biomechanik
-
tuw.publication.orgunit
E202-02 - Forschungsbereich Struktursimulation und Ingenieurholzbau
-
tuw.publisher.doi
10.1007/978-3-030-85569-7_21-1
-
dc.description.numberOfPages
26
-
tuw.author.orcid
0009-0001-8712-0341
-
tuw.author.orcid
0000-0003-3298-9792
-
wb.sciencebranch
Medizintechnik
-
wb.sciencebranch
Informatik
-
wb.sciencebranch
Sonstige Technische Wissenschaften
-
wb.sciencebranch.oefos
2060
-
wb.sciencebranch.oefos
1020
-
wb.sciencebranch.oefos
2119
-
wb.sciencebranch.value
40
-
wb.sciencebranch.value
30
-
wb.sciencebranch.value
30
-
item.openairetype
book part
-
item.cerifentitytype
Publications
-
item.grantfulltext
restricted
-
item.languageiso639-1
en
-
item.openairecristype
http://purl.org/coar/resource_type/c_3248
-
item.fulltext
no Fulltext
-
crisitem.author.dept
E202 - Institut für Mechanik der Werkstoffe und Strukturen
-
crisitem.author.dept
E202-01 - Forschungsbereich Festigkeitslehre und Biomechanik
-
crisitem.author.dept
E202-02 - Forschungsbereich Werkstoff- und Struktursimulation
-
crisitem.author.dept
University of Kragujevac
-
crisitem.author.dept
University of Kragujevac
-
crisitem.author.dept
Aix-Marseille Université
-
crisitem.author.dept
BOKU University
-
crisitem.author.dept
E202-01 - Forschungsbereich Festigkeitslehre und Biomechanik
-
crisitem.author.orcid
0009-0001-8712-0341
-
crisitem.author.orcid
0000-0003-3298-9792
-
crisitem.author.parentorg
E200 - Fakultät für Bau- und Umweltingenieurwesen
-
crisitem.author.parentorg
E202 - Institut für Mechanik der Werkstoffe und Strukturen
-
crisitem.author.parentorg
E202 - Institut für Mechanik der Werkstoffe und Strukturen
-
crisitem.author.parentorg
E202 - Institut für Mechanik der Werkstoffe und Strukturen