<div class="csl-bib-body">
<div class="csl-entry">Rebers, L., Reichsöllner, R., Regett, S., Tovar, G. E. M., Borchers, K., Baudis, S., & Southan, A. (2021). Differentiation of physical and chemical cross-linking in gelatin methacryloyl hydrogels. <i>Scientific Reports</i>, <i>11</i>, Article 3256. https://doi.org/10.1038/s41598-021-82393-z</div>
</div>
-
dc.identifier.issn
2045-2322
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/20687
-
dc.description.abstract
Gelatin methacryloyl (GM) hydrogels have been investigated for almost 20 years, especially for biomedical applications. Recently, strengthening effects of a sequential cross-linking procedure, whereby GM hydrogel precursor solutions are cooled before chemical cross-linking, were reported. It was hypothesized that physical and enhanced chemical cross-linking of the GM hydrogels contribute to the observed strengthening effects. However, a detailed investigation is missing so far. In this contribution, we aimed to reveal the impact of physical and chemical cross-linking on strengthening of sequentially cross-linked GM and gelatin methacryloyl acetyl (GMA) hydrogels. We investigated physical and chemical cross-linking of three different GM(A) derivatives (GM10, GM2A8 and GM2), which provided systematically varied ratios of side-group modifications. GM10 contained the highest methacryloylation degree (DM), reducing its ability to cross-link physically. GM2 had the lowest DM and showed physical cross-linking. The total modification degree, determining the physical cross-linking ability, of GM2A8 was comparable to that of GM10, but the chemical cross-linking ability was comparable to GM2. At first, we measured the double bond conversion (DBC) kinetics during chemical GM(A) cross-linking quantitatively in real-time via near infrared spectroscopy-photorheology and showed that the DBC decreased due to sequential cross-linking. Furthermore, results of circular dichroism spectroscopy and differential scanning calorimetry indicated gelation and conformation changes, which increased storage moduli of all GM(A) hydrogels due to sequential cross-linking. The data suggested that the total cross-link density determines hydrogel stiffness, regardless of the physical or chemical nature of the cross-links.
en
dc.language.iso
en
-
dc.publisher
Springer Nature
-
dc.relation.ispartof
Scientific Reports
-
dc.rights.uri
http://creativecommons.org/licenses/by/4.0/
-
dc.subject
Photopolymerization
en
dc.subject
Biomaterials
en
dc.subject
Photorheology
en
dc.title
Differentiation of physical and chemical cross-linking in gelatin methacryloyl hydrogels