<div class="csl-bib-body">
<div class="csl-entry">Körber, N., Kromer, E., Siebert, A., Hauke, S., Mueller-Gritschneder, D., & Schuller, B. (2025). EGIC: Enhanced Low-Bit-Rate Generative Image Compression Guided by Semantic Segmentation. In A. Leonardis, E. Ricci, & S. Roth (Eds.), <i>Computer Vision – ECCV 2024 : 18th European Conference, Milan, Italy, September 29 – October 4, 2024, Proceedings, Part XXXV</i> (pp. 202–220). Springer. https://doi.org/10.1007/978-3-031-72761-0_12</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/207386
-
dc.description.abstract
We introduce EGIC, an enhanced generative image compression method that allows traversing the distortion-perception curve efficiently from a single model. EGIC is based on two novel building blocks: i) OASIS-C, a conditional pre-trained semantic segmentation-guided discriminator, which provides both spatially and semantically-aware gradient feedback to the generator, conditioned on the latent image distribution, and ii) Output Residual Prediction (ORP), a retrofit solution for multi-realism image compression that allows control over the synthesis process by adjusting the impact of the residual between an MSE-optimized and GAN-optimized decoder output on the GAN-based reconstruction. Together, EGIC forms a powerful codec, outperforming state-of-the-art diffusion and GAN-based methods (e.g., HiFiC, MS-ILLM, and DIRAC-100), while performing almost on par with VTM-20.0 on the distortion end. EGIC is simple to implement, very lightweight, and provides excellent interpolation characteristics, which makes it a promising candidate for practical applications targeting the low bit range.
en
dc.language.iso
en
-
dc.relation.ispartofseries
Lecture Notes in Computer Science
-
dc.subject
GANs
en
dc.subject
Generative Image Compression
en
dc.subject
Transformer
en
dc.title
EGIC: Enhanced Low-Bit-Rate Generative Image Compression Guided by Semantic Segmentation
en
dc.type
Inproceedings
en
dc.type
Konferenzbeitrag
de
dc.contributor.affiliation
Technical University of Munich, Germany
-
dc.contributor.affiliation
University of Applied Sciences Landshut, Germany
-
dc.contributor.affiliation
University of Applied Sciences Landshut, Germany
-
dc.contributor.affiliation
University of Applied Sciences Landshut, Germany
-
dc.contributor.affiliation
Technical University of Munich, Germany
-
dc.relation.isbn
978-3-031-72760-3
-
dc.relation.doi
10.1007/978-3-031-72761-0
-
dc.relation.issn
0302-9743
-
dc.description.startpage
202
-
dc.description.endpage
220
-
dc.type.category
Full-Paper Contribution
-
dc.relation.eissn
1611-3349
-
tuw.booktitle
Computer Vision – ECCV 2024 : 18th European Conference, Milan, Italy, September 29 – October 4, 2024, Proceedings, Part XXXV
-
tuw.container.volume
15093
-
tuw.peerreviewed
true
-
tuw.relation.publisher
Springer
-
tuw.relation.publisherplace
Cham
-
tuw.researchTopic.id
I2
-
tuw.researchTopic.name
Computer Engineering and Software-Intensive Systems
-
tuw.researchTopic.value
100
-
tuw.publication.orgunit
E191-02 - Forschungsbereich Embedded Computing Systems
-
tuw.publisher.doi
10.1007/978-3-031-72761-0_12
-
dc.description.numberOfPages
19
-
tuw.author.orcid
0000-0002-1034-7898
-
tuw.author.orcid
0000-0003-4540-8061
-
tuw.author.orcid
0009-0002-5144-1482
-
tuw.author.orcid
0000-0001-7822-0191
-
tuw.author.orcid
0000-0003-0903-631X
-
tuw.author.orcid
0000-0002-6478-8699
-
tuw.editor.orcid
0000-0003-0773-3277
-
tuw.editor.orcid
0000-0002-0228-1147
-
tuw.editor.orcid
0000-0003-3616-2223
-
tuw.event.name
The 18th European Conference on Computer Vision ECCV 2024
en
tuw.event.startdate
29-09-2024
-
tuw.event.enddate
04-10-2024
-
tuw.event.online
On Site
-
tuw.event.type
Event for scientific audience
-
tuw.event.place
Milano
-
tuw.event.country
IT
-
tuw.event.presenter
Körber, Nikolai
-
wb.sciencebranch
Informatik
-
wb.sciencebranch
Elektrotechnik, Elektronik, Informationstechnik
-
wb.sciencebranch
Mathematik
-
wb.sciencebranch.oefos
1020
-
wb.sciencebranch.oefos
2020
-
wb.sciencebranch.oefos
1010
-
wb.sciencebranch.value
50
-
wb.sciencebranch.value
40
-
wb.sciencebranch.value
10
-
item.openairecristype
http://purl.org/coar/resource_type/c_5794
-
item.openairetype
conference paper
-
item.cerifentitytype
Publications
-
item.fulltext
no Fulltext
-
item.languageiso639-1
en
-
item.grantfulltext
none
-
crisitem.author.dept
Technical University of Munich
-
crisitem.author.dept
University of Applied Sciences Landshut, Germany
-
crisitem.author.dept
University of Applied Sciences Landshut, Germany
-
crisitem.author.dept
University of Applied Sciences Landshut, Germany
-
crisitem.author.dept
E191-02 - Forschungsbereich Embedded Computing Systems