<div class="csl-bib-body">
<div class="csl-entry">Schnöll, D., Wess, M., Bittner, M., Götzinger, M., & Jantsch, A. (2023). Fast, Quantization Aware DNN Training for Efficient HW Implementation. In <i>2023 26th Euromicro Conference on Digital System Design (DSD)</i> (pp. 700–707). https://doi.org/10.1109/DSD60849.2023.00100</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/207604
-
dc.description.abstract
Quantization of Deep Neural Networks is a central technique to reduce the computation load in embedded devices. Even in quantized Deep Neural Networks (DNNs), the scaler/rescaler following a convolution or dense layer often requires a high bit width multiplication and a shift. Previous work has proposed to remove the multiplier by restricting the quantization method. We propose a Quantisation Aware Training (QAT) approach, which explicitly models the rescaler during training, eliminating the limitations of quantization functions and achieving a 30-35% improvement in training time and a significant reduction in memory requirements compared to the state-of-the-art. GitHub: https://github.com/embedded-machine-learning/FastQATforPOTRescaler
en
dc.language.iso
en
-
dc.subject
Convolution
en
dc.subject
hardware-friendly
en
dc.subject
Neural networks
en
dc.subject
Quantization (signal)
en
dc.subject
Quantization Aware Training
en
dc.subject
Training
en
dc.title
Fast, Quantization Aware DNN Training for Efficient HW Implementation
en
dc.type
Inproceedings
en
dc.type
Konferenzbeitrag
de
dc.relation.isbn
979-8-3503-4419-6
-
dc.description.startpage
700
-
dc.description.endpage
707
-
dc.rights.holder
IEEE
-
dc.type.category
Abstract Book Contribution
-
tuw.booktitle
2023 26th Euromicro Conference on Digital System Design (DSD)
-
tuw.peerreviewed
true
-
tuw.researchTopic.id
C4
-
tuw.researchTopic.id
C5
-
tuw.researchTopic.id
C3
-
tuw.researchTopic.name
Mathematical and Algorithmic Foundations
-
tuw.researchTopic.name
Computer Science Foundations
-
tuw.researchTopic.name
Computational System Design
-
tuw.researchTopic.value
60
-
tuw.researchTopic.value
30
-
tuw.researchTopic.value
10
-
tuw.publication.orgunit
E384-02 - Forschungsbereich Systems on Chip
-
tuw.publisher.doi
10.1109/DSD60849.2023.00100
-
dc.description.numberOfPages
8
-
tuw.author.orcid
0009-0009-5834-6526
-
tuw.author.orcid
0000-0002-1877-4114
-
tuw.author.orcid
0009-0004-8022-2232
-
tuw.author.orcid
0000-0003-2251-0004
-
tuw.event.name
26th Euromicro Conference on Digital System Design (DSD 2023)