<div class="csl-bib-body">
<div class="csl-entry">Affolter, N. C., Dellinger, F., Müller, C., Polly, D. F., & Smeenk, N. (2024). <i>Discrete Lorentz surfaces and s-embeddings I: isothermic surfaces</i>. arXiv. https://doi.org/10.48550/arXiv.2410.11575</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/207624
-
dc.description.abstract
S-embeddings were introduced by Chelkak as a tool to study the conformal invariance of the thermodynamic limit of the Ising model. Moreover, Chelkak, Laslier and Russkikh introduced a lift of s-embeddings to Lorentz space, and showed that in the limit the lift converges to a maximal surface. They posed the question whether there are s-embeddings that lift to maximal surfaces already at the discrete level, before taking the limit. This paper is the first in a two paper series, in which we answer that question in the positive. In this paper we introduce a correspondence between s-embeddings (incircular nets) and congruences of touching Lorentz spheres. This geometric interpretation of s-embeddings enables us to apply the tools of discrete differential geometry. We identify a subclass of s-embeddings -- isothermic s-embeddings -- that lift to (discrete) S-isothermic surfaces, which were introduced by Bobenko and Pinkall. S-isothermic surfaces are the key component that will allow us to obtain discrete maximal surfaces in the follow-up paper. Moreover, we show here that the Ising weights of an isothermic s-embedding are in a subvariety.
en
dc.language.iso
en
-
dc.subject
surfaces
en
dc.title
Discrete Lorentz surfaces and s-embeddings I: isothermic surfaces
en
dc.type
Preprint
en
dc.type
Preprint
de
dc.identifier.arxiv
2410.11575
-
dc.contributor.affiliation
Technische Universität Berlin, Germany
-
tuw.researchTopic.id
X1
-
tuw.researchTopic.name
Beyond TUW-research focus
-
tuw.researchTopic.value
100
-
tuw.publication.orgunit
E104-03 - Forschungsbereich Differentialgeometrie und geometrische Strukturen
-
tuw.publication.orgunit
E104-04 - Forschungsbereich Angewandte Geometrie
-
tuw.publisher.doi
10.48550/arXiv.2410.11575
-
tuw.author.orcid
0000-0002-6396-9121
-
tuw.author.orcid
0009-0005-1017-4826
-
tuw.publisher.server
arXiv
-
wb.sciencebranch
Informatik
-
wb.sciencebranch
Mathematik
-
wb.sciencebranch.oefos
1020
-
wb.sciencebranch.oefos
1010
-
wb.sciencebranch.value
5
-
wb.sciencebranch.value
95
-
item.openairecristype
http://purl.org/coar/resource_type/c_816b
-
item.openairetype
preprint
-
item.fulltext
no Fulltext
-
item.languageiso639-1
en
-
item.grantfulltext
none
-
item.cerifentitytype
Publications
-
crisitem.author.dept
E104-04 - Forschungsbereich Angewandte Geometrie
-
crisitem.author.dept
E104-04 - Forschungsbereich Angewandte Geometrie
-
crisitem.author.dept
E104-04 - Forschungsbereich Angewandte Geometrie
-
crisitem.author.dept
E104-03 - Forschungsbereich Differentialgeometrie und geometrische Strukturen
-
crisitem.author.dept
Technische Universität Berlin
-
crisitem.author.orcid
0000-0002-6396-9121
-
crisitem.author.orcid
0009-0005-1017-4826
-
crisitem.author.parentorg
E104 - Institut für Diskrete Mathematik und Geometrie
-
crisitem.author.parentorg
E104 - Institut für Diskrete Mathematik und Geometrie
-
crisitem.author.parentorg
E104 - Institut für Diskrete Mathematik und Geometrie
-
crisitem.author.parentorg
E104 - Institut für Diskrete Mathematik und Geometrie