<div class="csl-bib-body">
<div class="csl-entry">Affolter, N. C., Dellinger, F., Müller, C., Polly, D. F., & Smeenk, N. (2024). <i>Discrete Lorentz surfaces and s-embeddings II: maximal surfaces</i>. arXiv. https://doi.org/10.48550/arXiv.2411.19055</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/207625
-
dc.description.abstract
S-embeddings were introduced by Chelkak as a tool to study the conformal invariance of the thermodynamic limit of the Ising model. Moreover, Chelkak, Laslier and Russkikh introduced a lift of s-embeddings to Lorentz space, and showed that in the limit the lift converges to a maximal surface. They posed the question whether there are s-embeddings that lift to maximal surfaces already at the discrete level, before taking the limit. We answer this question in the positive. In a previous paper we identified a subclass of s-embeddings--isothermic s-embeddings--that lift to (discrete) S-isothermic surfaces, which were introduced by Bobenko and Pinkall as a discretization of isothermic surfaces. In this paper we identify a special class of isothermic s-embeddings that correspond to discrete S-maximal surfaces, translating an approach of Bobenko, Hoffmann and Springborn introduced for discrete S-minimal surfaces in Euclidean space. Additionally, each S-maximal surface comes with a 1-parameter family of associated surfaces that are isometric. This enables us to obtain an associated family of s-embeddings for each maximal s-embedding. We show that the Ising weights are constant in the associated family.
en
dc.language.iso
en
-
dc.subject
surfaces
en
dc.title
Discrete Lorentz surfaces and s-embeddings II: maximal surfaces
en
dc.type
Preprint
en
dc.type
Preprint
de
dc.identifier.arxiv
2411.19055
-
dc.contributor.affiliation
Technische Universität Berlin, Germany
-
tuw.researchTopic.id
X1
-
tuw.researchTopic.name
Beyond TUW-research focus
-
tuw.researchTopic.value
100
-
tuw.publication.orgunit
E104-03 - Forschungsbereich Differentialgeometrie und geometrische Strukturen
-
tuw.publication.orgunit
E104-04 - Forschungsbereich Angewandte Geometrie
-
tuw.publisher.doi
10.48550/arXiv.2411.19055
-
tuw.author.orcid
0000-0002-6396-9121
-
tuw.author.orcid
0009-0005-1017-4826
-
tuw.publisher.server
arXiv
-
wb.sciencebranch
Informatik
-
wb.sciencebranch
Mathematik
-
wb.sciencebranch.oefos
1020
-
wb.sciencebranch.oefos
1010
-
wb.sciencebranch.value
5
-
wb.sciencebranch.value
95
-
item.openairecristype
http://purl.org/coar/resource_type/c_816b
-
item.openairetype
preprint
-
item.fulltext
no Fulltext
-
item.languageiso639-1
en
-
item.grantfulltext
none
-
item.cerifentitytype
Publications
-
crisitem.author.dept
E104-04 - Forschungsbereich Angewandte Geometrie
-
crisitem.author.dept
E104-04 - Forschungsbereich Angewandte Geometrie
-
crisitem.author.dept
E104-04 - Forschungsbereich Angewandte Geometrie
-
crisitem.author.dept
E104-03 - Forschungsbereich Differentialgeometrie und geometrische Strukturen
-
crisitem.author.dept
Technische Universität Berlin
-
crisitem.author.orcid
0000-0002-6396-9121
-
crisitem.author.orcid
0009-0005-1017-4826
-
crisitem.author.parentorg
E104 - Institut für Diskrete Mathematik und Geometrie
-
crisitem.author.parentorg
E104 - Institut für Diskrete Mathematik und Geometrie
-
crisitem.author.parentorg
E104 - Institut für Diskrete Mathematik und Geometrie
-
crisitem.author.parentorg
E104 - Institut für Diskrete Mathematik und Geometrie