<div class="csl-bib-body">
<div class="csl-entry">Izmestiev, I., & Lam, W. Y. (2024). <i>Discrete Laplacians – spherical and hyperbolic</i>. arXiv. https://doi.org/10.48550/arXiv.2408.04877</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/207626
-
dc.description.abstract
The discrete Laplacian on Euclidean triangulated surfaces is a well-established notion. We introduce discrete Laplacians on spherical and hyperbolic triangulated surfaces. On the one hand, our definitions are close to the Euclidean one in that the edge weights contain the cotangents of certain combinations of angles and are non-negative if and only if the triangulation is Delaunay. On the other hand, these discretizations are structure-preserving in several respects. We prove that the area of a convex polyhedron can be written in terms of the discrete spherical Laplacian of the support function, whose expression is the same as the area of a smooth convex body in terms of the usual spherical Laplacian. We show that the conformal factors of discrete conformal vector fields on a triangulated surface of curvature k∈{−1,1} are −2k-eigenfunctions of our discrete Laplacians, exactly as in the smooth setting. The discrete conformality can be understood here both in the sense of the vertex scaling and in the sense of circle patterns. Finally, we connect the −2k-eigenfunctions to infinitesimal isometric deformations of a polyhedron inscribed into corresponding quadrics.
en
dc.description.sponsorship
FWF - Österr. Wissenschaftsfonds
-
dc.language.iso
en
-
dc.subject
discrete Laplacians
en
dc.subject
Discrete conformality
en
dc.title
Discrete Laplacians – spherical and hyperbolic
en
dc.type
Preprint
en
dc.type
Preprint
de
dc.identifier.arxiv
2408.04877
-
dc.contributor.affiliation
University of Luxembourg, Luxembourg
-
dc.relation.grantno
F 77
-
tuw.project.title
Advanced Computational Design
-
tuw.researchTopic.id
A3
-
tuw.researchTopic.name
Fundamental Mathematics Research
-
tuw.researchTopic.value
100
-
tuw.publication.orgunit
E104-03 - Forschungsbereich Differentialgeometrie und geometrische Strukturen
-
tuw.publisher.doi
10.48550/arXiv.2408.04877
-
dc.description.numberOfPages
27
-
tuw.author.orcid
0000-0003-3173-7841
-
tuw.author.orcid
0000-0003-4715-6152
-
tuw.publisher.server
arXiv
-
wb.sciencebranch
Mathematik
-
wb.sciencebranch.oefos
1010
-
wb.sciencebranch.value
100
-
item.openairecristype
http://purl.org/coar/resource_type/c_816b
-
item.openairetype
preprint
-
item.fulltext
no Fulltext
-
item.languageiso639-1
en
-
item.grantfulltext
none
-
item.cerifentitytype
Publications
-
crisitem.author.dept
E104-03 - Forschungsbereich Differentialgeometrie und geometrische Strukturen
-
crisitem.author.dept
University of Luxembourg
-
crisitem.author.orcid
0000-0003-3173-7841
-
crisitem.author.orcid
0000-0003-4715-6152
-
crisitem.author.parentorg
E104 - Institut für Diskrete Mathematik und Geometrie