<div class="csl-bib-body">
<div class="csl-entry">Andretta, A., & Izmestiev, I. (2024). <i>How many sprays cover the space?</i> arXiv. https://doi.org/10.34726/8059</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/207864
-
dc.identifier.uri
https://doi.org/10.34726/8059
-
dc.description.abstract
For all d ≥ 3 we show that the cardinality of ℝ is at most ℵₙ if and only if ℝᵈ can be covered with (n+1)(d−1)+1 sprays whose centers are in general position in a hyperplane. This extends previous results by Schmerl when d = 2.
en
dc.language.iso
en
-
dc.rights.uri
http://creativecommons.org/licenses/by/4.0/
-
dc.subject
continuum hypothesis
en
dc.subject
sprays
en
dc.title
How many sprays cover the space?
en
dc.type
Preprint
en
dc.type
Preprint
de
dc.rights.license
Creative Commons Namensnennung 4.0 International
de
dc.rights.license
Creative Commons Attribution 4.0 International
en
dc.identifier.doi
10.34726/8059
-
dc.identifier.arxiv
2406.04078
-
dc.contributor.affiliation
University of Turin, Italy
-
tuw.researchTopic.id
A3
-
tuw.researchTopic.name
Fundamental Mathematics Research
-
tuw.researchTopic.value
100
-
tuw.publication.orgunit
E104-03 - Forschungsbereich Differentialgeometrie und geometrische Strukturen
-
tuw.publisher.doi
10.48550/arXiv.2406.04078
-
dc.identifier.libraryid
AC17448980
-
dc.description.numberOfPages
31
-
tuw.author.orcid
0000-0003-2802-8235
-
tuw.author.orcid
0000-0003-3173-7841
-
dc.rights.identifier
CC BY 4.0
de
dc.rights.identifier
CC BY 4.0
en
tuw.publisher.server
arXiv
-
wb.sciencebranch
Mathematik
-
wb.sciencebranch.oefos
1010
-
wb.sciencebranch.value
100
-
item.openairecristype
http://purl.org/coar/resource_type/c_816b
-
item.openaccessfulltext
Open Access
-
item.openairetype
preprint
-
item.fulltext
with Fulltext
-
item.mimetype
application/pdf
-
item.languageiso639-1
en
-
item.grantfulltext
open
-
item.cerifentitytype
Publications
-
crisitem.author.dept
University of Turin
-
crisitem.author.dept
E104-03 - Forschungsbereich Differentialgeometrie und geometrische Strukturen
-
crisitem.author.orcid
0000-0003-3173-7841
-
crisitem.author.parentorg
E104 - Institut für Diskrete Mathematik und Geometrie