<div class="csl-bib-body">
<div class="csl-entry">Muehlmann, C., Filzmoser, P., & Nordhausen, K. (2024). Local Difference Matrices for Spatial Blind Source Separation. In S. Khomsi, M. Bezzeghoud, S. Banerjee, M. Eshagh, A. C. Benim, B. Merkel, A. Kallel, S. Panda, H. Chenchouni, S. Grab, & M. Barbieri (Eds.), <i>Selected Studies in Geophysics, Tectonics and Petroleum Geosciences</i> (pp. 63–65). https://doi.org/10.1007/978-3-031-43807-3_12</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/207909
-
dc.description.abstract
Multivariate geochemical data possess many challenges for statistical modeling, such as the multivariate dependencies between the chemicals on-site and the spatial dependencies that need to be considered. Recently, spatial blind source separation (SBSS) was suggested, where it is assumed that the multivariate measurements are formed as linear combinations of unobserved random fields that are uncorrelated and fulfill second-order stationarity assumptions. In this work, we refine SBSS by suggesting a new local covariance matrix which is based on local differences. This leads to a more robust SBSS approach which can tolerate violations of the second-order stationarity assumption. We illustrate our approach by analyzing a geochemical dataset derived from the GEMAS project.
en
dc.description.sponsorship
FWF - Österr. Wissenschaftsfonds
-
dc.language.iso
en
-
dc.relation.ispartofseries
Advances in Science, Technology & Innovation
-
dc.subject
Geostatistics
en
dc.subject
Random fields
en
dc.subject
Second-order stationarity
en
dc.title
Local Difference Matrices for Spatial Blind Source Separation
en
dc.type
Inproceedings
en
dc.type
Konferenzbeitrag
de
dc.contributor.affiliation
TU Wien, Austria
-
dc.relation.isbn
978-3-031-43807-3
-
dc.description.startpage
63
-
dc.description.endpage
65
-
dc.relation.grantno
P 31881-N32
-
dc.type.category
Full-Paper Contribution
-
tuw.booktitle
Selected Studies in Geophysics, Tectonics and Petroleum Geosciences