<div class="csl-bib-body">
<div class="csl-entry">Parzer, R., Filzmoser, P., & Vana Gür, L. (2024). Random projections for classification with high-dimensional data. In <i>Proceedings of the 38th International Workshop on Statistical Modelling</i> (pp. 236–239).</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/207912
-
dc.description.abstract
We examine the binary classification problem in a challenging high-dimensional setting with correlated predictors, where the coefficients in a logistic regression model can vary from sparse to dense. In this work, we propose the use of a data-driven random projection matrix to reduce the original feature space. The random projection combines variables considering their respective effect on the class response and such that the regression coefficient can still be recovered. In a simulation exercise, we show that the proposed random projection produces significantly better prediction results than conventional random projections, even outperforming benchmarks such as glmnet’s logistic regression with elastic net penalty.
en
dc.description.sponsorship
FWF - Österr. Wissenschaftsfonds
-
dc.language.iso
en
-
dc.subject
high-dimensional statistics
en
dc.subject
Classification
en
dc.subject
Dimension Reduction
en
dc.subject
Random Projection
en
dc.title
Random projections for classification with high-dimensional data
en
dc.type
Inproceedings
en
dc.type
Konferenzbeitrag
de
dc.description.startpage
236
-
dc.description.endpage
239
-
dc.relation.grantno
ZK 35-G
-
dc.type.category
Abstract Book Contribution
-
tuw.booktitle
Proceedings of the 38th International Workshop on Statistical Modelling
-
tuw.project.title
Hochdimensionales statistisches Lernen: Neue Methoden zur Förderung der Wirtschafts- und Nachhaltigkeitspolitik