<div class="csl-bib-body">
<div class="csl-entry">Pfeiffer, P., & Filzmoser, P. (2024). Low-Rank Approximation of Data Matrices Using Robust Sparse Principal Component Analysis. In J. Ansari, S. Fuchs, W. Trutschnig, M. A. Lubiano Gomez, M. Á. Gil, P. Grzegorzewski, & O. Hryniewicz (Eds.), <i>Combining, Modelling and Analyzing Imprecision, Randomness and Dependence</i> (pp. 357–362). https://doi.org/10.1007/978-3-031-65993-5_44</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/207914
-
dc.description.abstract
The estimation of principal components can be influenced by outlying observations, so-called row-wise outliers. For high-dimensional data, it becomes more and more likely that an observation contains outlying cells, which would lead to many row-wise outliers and to a breakdown of traditional robust methods. In this case, it is preferable to achieve protection against cell-wise outliers. We present various approaches for principal component analysis that lead to row-wise and cell-wise robustness. Moreover, we focus on sparse methods that enforce zeros in the
loadings matrix and thus simplify the interpretation.
en
dc.description.sponsorship
FFG - Österr. Forschungsförderungs- gesellschaft mbH
-
dc.language.iso
en
-
dc.relation.ispartofseries
Advances in Intelligent Systems and Computing
-
dc.subject
cell-wise robustness
en
dc.subject
sparsity
en
dc.subject
multivariate statistics
en
dc.title
Low-Rank Approximation of Data Matrices Using Robust Sparse Principal Component Analysis
en
dc.type
Inproceedings
en
dc.type
Konferenzbeitrag
de
dc.contributor.editoraffiliation
Department of Artificial Intelligence and Human Interfaces, Paris Lodron
-
dc.contributor.editoraffiliation
Department of Artificial Intelligence and Human Interfaces, Paris Lodron
-
dc.contributor.editoraffiliation
Warsaw University of Technology, Poland
-
dc.contributor.editoraffiliation
Polish Academy of Sciences, Poland
-
dc.relation.isbn
978-3-031-65993-5
-
dc.description.startpage
357
-
dc.description.endpage
362
-
dc.relation.grantno
RV-TUW 01
-
dc.type.category
Full-Paper Contribution
-
tuw.booktitle
Combining, Modelling and Analyzing Imprecision, Randomness and Dependence