DC Element
Wert
Sprache
dc.contributor.author
Rufin, Manuel
-
dc.contributor.author
Nalbach, Mathis
-
dc.contributor.author
Rakuš, Maja
-
dc.contributor.author
Fuchs, Magdalena
-
dc.contributor.author
Poik, Mathias
-
dc.contributor.author
Schitter, Georg
-
dc.contributor.author
Thurner, Philipp J.
-
dc.contributor.author
Andriotis, Orestis G
-
dc.date.accessioned
2025-01-07T13:18:12Z
-
dc.date.available
2025-01-07T13:18:12Z
-
dc.date.issued
2024-11-17
-
dc.identifier.citation
<div class="csl-bib-body">
<div class="csl-entry">Rufin, M., Nalbach, M., Rakuš, M., Fuchs, M., Poik, M., Schitter, G., Thurner, P. J., & Andriotis, O. G. (2024). Methylglyoxal alters collagen fibril nanostiffness and surface potential. <i>Acta Biomaterialia</i>, <i>189</i>, 208–216. https://doi.org/10.1016/j.actbio.2024.08.039</div>
</div>
-
dc.identifier.issn
1742-7061
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/207967
-
dc.description.abstract
Collagen fibrils are fundamental to the mechanical strength and function of biological tissues. However, they are susceptible to changes from non-enzymatic glycation, resulting in the formation of advanced glycation end-products (AGEs) that are not reversible. AGEs accumulate with aging and disease and can adversely impact tissue mechanics and cell-ECM interactions. AGE-crosslinks have been related, on the one hand, to dysregulation of collagen fibril stiffness and damage and, on the other hand, to altered collagen net surface charge as well as impaired cell recognition sites. While prior studies using Kelvin probe force microscopy (KPFM) have shown the effect glycation has on collagen fibril surface potential (i.e., net charge), the combined effect on individual and isolated collagen fibril mechanics, hydration, and surface potential has not been documented. Here, we explore how methylglyoxal (MGO) treatment affects the mechanics and surface potential of individual and isolated collagen fibrils by utilizing atomic force microscopy (AFM) nanoindentation and KPFM. Our results reveal that MGO treatment significantly increases nanostiffness, alters surface potential, and modifies hydration characteristics at the collagen fibril level. These findings underscore the critical impact of AGEs on collagen fibril physicochemical properties, offering insights into pathophysiological mechanical and biochemical alterations with implications for cell mechanotransduction during aging and in diabetes. STATEMENT OF SIGNIFICANCE: Collagen fibrils are susceptible to glycation, the irreversible reaction of amino acids with sugars. Glycation affects the mechanical properties and surface chemistry of collagen fibrils with adverse alterations in biological tissue mechanics and cell-ECM interactions. Current research on glycation, at the level of individual collagen fibrils, is sparse and has focused either on collagen fibril mechanics, with contradicting evidence, or surface potential. Here, we utilized a multimodal approach combining Kelvin probe force (KPFM) and atomic force microscopy (AFM) to examine how methylglyoxal glycation induces structural, mechanical, and surface potential changes on the same individual and isolated collagen fibrils. This approach helps inform structure-function relationships at the level of individual collagen fibrils.
en
dc.language.iso
en
-
dc.publisher
ELSEVIER SCI LTD
-
dc.relation.ispartof
Acta Biomaterialia
-
dc.subject
Animals
en
dc.subject
Microscopy, Atomic Force
en
dc.subject
Collagen
en
dc.subject
Glycation End Products, Advanced
en
dc.subject
Advanced glycation end products
en
dc.subject
Atomic force microscopy
en
dc.subject
Collagen
en
dc.subject
Glycation
en
dc.subject
Kelvin probe force microscopy
en
dc.subject
Methylglyoxal
en
dc.subject
Nanoindentation
en
dc.subject
Surface potential
en
dc.subject
Pyruvaldehyde
en
dc.subject
Surface Properties
en
dc.title
Methylglyoxal alters collagen fibril nanostiffness and surface potential
en
dc.type
Article
en
dc.type
Artikel
de
dc.identifier.pmid
39218277
-
dc.identifier.scopus
2-s2.0-85206152869
-
dc.identifier.url
https://api.elsevier.com/content/abstract/scopus_id/85206152869
-
dc.contributor.affiliation
TU Wien, Austria
-
dc.description.startpage
208
-
dc.description.endpage
216
-
dc.type.category
Original Research Article
-
tuw.container.volume
189
-
tuw.journal.peerreviewed
true
-
tuw.peerreviewed
true
-
tuw.researchTopic.id
M6
-
tuw.researchTopic.name
Biological and Bioactive Materials
-
tuw.researchTopic.value
100
-
dcterms.isPartOf.title
Acta Biomaterialia
-
tuw.publication.orgunit
E317-02 - Forschungsbereich Biomechanik
-
tuw.publication.orgunit
E056-03 - Fachbereich BIOINTERFACE - Frontier Research in Nanotechnology and the Life Sciences
-
tuw.publication.orgunit
E056-12 - Fachbereich ENROL DP
-
tuw.publication.orgunit
E056-14 - Fachbereich Mature Tissue
-
tuw.publication.orgunit
E057-17 - Fachbereich Cell Culture Core Facility (CCCF)
-
tuw.publication.orgunit
E376-01 - Forschungsbereich Intelligente Mechatronische Systeme
-
tuw.publisher.doi
10.1016/j.actbio.2024.08.039
-
dc.date.onlinefirst
2024-08-31
-
dc.identifier.eissn
1878-7568
-
dc.description.numberOfPages
9
-
tuw.author.orcid
0000-0003-0322-0095
-
tuw.author.orcid
0000-0002-1768-8118
-
tuw.author.orcid
0009-0002-6007-6157
-
tuw.author.orcid
0009-0002-5479-964X
-
tuw.author.orcid
0000-0002-8746-5892
-
tuw.author.orcid
0000-0001-7588-9041
-
tuw.author.orcid
0000-0003-4107-1510
-
wb.sci
true
-
wb.sciencebranch
Maschinenbau
-
wb.sciencebranch
Sonstige Technische Wissenschaften
-
wb.sciencebranch
Sonstige Humanmedizin, Gesundheitswissenschaften
-
wb.sciencebranch.oefos
2030
-
wb.sciencebranch.oefos
2119
-
wb.sciencebranch.oefos
3059
-
wb.sciencebranch.value
40
-
wb.sciencebranch.value
30
-
wb.sciencebranch.value
30
-
item.cerifentitytype
Publications
-
item.languageiso639-1
en
-
item.fulltext
no Fulltext
-
item.openairetype
research article
-
item.openairecristype
http://purl.org/coar/resource_type/c_2df8fbb1
-
item.grantfulltext
none
-
crisitem.author.dept
E317-02 - Forschungsbereich Biomechanik
-
crisitem.author.dept
E317-02 - Forschungsbereich Biomechanik
-
crisitem.author.dept
TU Wien
-
crisitem.author.dept
E317-02 - Forschungsbereich Biomechanik
-
crisitem.author.dept
E376-01 - Forschungsbereich Intelligente Mechatronische Systeme
-
crisitem.author.dept
E376 - Institut für Automatisierungs- und Regelungstechnik
-
crisitem.author.dept
E317 - Institut für Leichtbau und Struktur-Biomechanik
-
crisitem.author.dept
E317-02 - Forschungsbereich Biomechanik
-
crisitem.author.orcid
0000-0002-1768-8118
-
crisitem.author.orcid
0009-0002-6007-6157
-
crisitem.author.orcid
0009-0002-5479-964X
-
crisitem.author.orcid
0000-0002-8746-5892
-
crisitem.author.orcid
0000-0001-7588-9041
-
crisitem.author.orcid
0000-0003-4107-1510
-
crisitem.author.parentorg
E317 - Institut für Leichtbau und Struktur-Biomechanik
-
crisitem.author.parentorg
E317 - Institut für Leichtbau und Struktur-Biomechanik
-
crisitem.author.parentorg
E317 - Institut für Leichtbau und Struktur-Biomechanik
-
crisitem.author.parentorg
E376 - Institut für Automatisierungs- und Regelungstechnik
-
crisitem.author.parentorg
E350 - Fakultät für Elektrotechnik und Informationstechnik
-
crisitem.author.parentorg
E300 - Fakultät für Maschinenwesen und Betriebswissenschaften
-
crisitem.author.parentorg
E317 - Institut für Leichtbau und Struktur-Biomechanik
-
Enthalten in den Sammlungen: