<div class="csl-bib-body">
<div class="csl-entry">Bresich, M., Raidl, G. R., & Limmer, S. (2024). Letting a Large Neighborhood Search for an Electric Dial-A-Ride Problem Fly: On-The-Fly Charging Station Insertion. In <i>GECCO ’24 Companion: Proceedings of the Genetic and Evolutionary Computation Conference Companion</i> (pp. 142–150). Association for Computing Machinery. https://doi.org/10.1145/3638529.3654057</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/208028
-
dc.description.abstract
We consider the electric autonomous dial-a-ride problem (E-ADARP), a challenging extension of the dial-a-ride problem with the goal of finding minimum cost routes serving given transportation requests with a fleet of electric and autonomous vehicles (EAVs). Special emphasis lies on the minimization of user excess ride time under consideration of the charging requirements of the EAVs while constraints regarding, for example, user ride times and time windows have to be satisfied. We propose a novel large neighborhood search (LNS) approach for the E-ADARP employing the concept of battery-restricted fragments for route representation and efficient cost computations. For the charging of the EAVs, the scheduling, and route evaluation, we introduce two approaches where one deals with these challenges separately and one provides a combined approach. The first approach uses dedicated LNS operators and a forward labeling algorithm whereas the latter employs a novel route evaluation procedure for inserting charging stops on-the-fly as needed. The performance of our LNS-based algorithms is evaluated on common benchmark instances and results show that especially the approach with the on-the-fly insertion almost consistently outperforms former state-of-the-art techniques, finding new best-known solutions for many instances.
en
dc.description.sponsorship
Honda Research Institute Europe Gmb
-
dc.language.iso
en
-
dc.subject
dial-a-ride problem
en
dc.subject
electric autonomous vehicles
en
dc.subject
large neighborhood search
en
dc.title
Letting a Large Neighborhood Search for an Electric Dial-A-Ride Problem Fly: On-The-Fly Charging Station Insertion
en
dc.type
Inproceedings
en
dc.type
Konferenzbeitrag
de
dc.relation.publication
GECCO '24 Companion: Proceedings of the Genetic and Evolutionary Computation Conference Companion
-
dc.contributor.affiliation
Honda (Germany), Germany
-
dc.relation.isbn
979-8-4007-0494-9
-
dc.description.startpage
142
-
dc.description.endpage
150
-
dc.relation.grantno
01/2023
-
dc.type.category
Full-Paper Contribution
-
tuw.booktitle
GECCO '24 Companion: Proceedings of the Genetic and Evolutionary Computation Conference Companion
-
tuw.peerreviewed
true
-
tuw.relation.publisher
Association for Computing Machinery
-
tuw.relation.publisherplace
New York
-
tuw.project.title
Learning to Solve Dynamic Vehicle Routing Problems
-
tuw.researchTopic.id
I1
-
tuw.researchTopic.name
Logic and Computation
-
tuw.researchTopic.value
100
-
tuw.publication.orgunit
E192-01 - Forschungsbereich Algorithms and Complexity
-
tuw.publisher.doi
10.1145/3638529.3654057
-
dc.description.numberOfPages
9
-
tuw.author.orcid
0009-0000-8291-6765
-
tuw.author.orcid
0000-0002-3293-177X
-
tuw.author.orcid
0000-0003-2385-7886
-
tuw.event.name
GECCO '24: Genetic and Evolutionary Computation Conference
en
tuw.event.startdate
14-07-2024
-
tuw.event.enddate
18-07-2024
-
tuw.event.online
Hybrid
-
tuw.event.type
Event for scientific audience
-
tuw.event.place
Melbourne
-
tuw.event.country
AU
-
tuw.event.presenter
Bresich, Maria
-
tuw.event.track
Multi Track
-
wb.sciencebranch
Informatik
-
wb.sciencebranch
Mathematik
-
wb.sciencebranch.oefos
1020
-
wb.sciencebranch.oefos
1010
-
wb.sciencebranch.value
80
-
wb.sciencebranch.value
20
-
item.openairecristype
http://purl.org/coar/resource_type/c_5794
-
item.openairetype
conference paper
-
item.fulltext
no Fulltext
-
item.languageiso639-1
en
-
item.grantfulltext
none
-
item.cerifentitytype
Publications
-
crisitem.author.dept
E192-01 - Forschungsbereich Algorithms and Complexity
-
crisitem.author.dept
E192-01 - Forschungsbereich Algorithms and Complexity