<div class="csl-bib-body">
<div class="csl-entry">Colucci, A., Steininger, A., & Shafique, M. (2024). EISFINN: On the Role of Efficient Importance Sampling in Fault Injection Campaigns for Neural Network Robustness Analysis. In <i>2024 IEEE 30th International Symposium on On-Line Testing and Robust System Design (IOLTS)</i>. 2024 IEEE 30th International Symposium on On-line Testing and Robust System Design (IOLTS), Rennes, Brittany, France. IEEE. https://doi.org/10.1109/IOLTS60994.2024.10616075</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/208038
-
dc.description.abstract
Deep Learning (DL) systems have proliferated in many applications, requiring specialized hardware accelerators. An efficient fault-injection methodology is needed for analyzing the resilience of advanced DL systems against different types of faults, which can lead to undetectable and unrecoverable errors. Typically, in a fault injection campaign, the faults are sampled from the random uniform space covering all the possible faults. However, this method is extremely inefficient for large Deep Neural Networks (DNNs), and existing solutions require apriori knowledge on the model, filtering out the search space. Therefore, we propose EISFINN, a novel methodology that employs user-selected neuron sensitivity algorithms to generate importance sampling-based fault-scenarios. Without any a-priori knowledge of the model-under-test, EISFINN provides an equivalent reduction of the search space as existing works, while allowing long simulations to cover all the possible faults, improving on existing model requirements. Our experiments show that the importance sampling provides up to 10 × higher precision in selecting critical faults than the random uniform sampling, in less than 100 faults.
en
dc.language.iso
en
-
dc.subject
Knowledge engineering
en
dc.subject
Sensitivity
en
dc.subject
Filtering
en
dc.subject
Neurons
en
dc.subject
Robustness
en
dc.subject
System analysis and design
en
dc.subject
Monte Carlo methods
en
dc.title
EISFINN: On the Role of Efficient Importance Sampling in Fault Injection Campaigns for Neural Network Robustness Analysis
en
dc.type
Inproceedings
en
dc.type
Konferenzbeitrag
de
dc.relation.publication
2024 IEEE 30th International Symposium on On-Line Testing and Robust System Design (IOLTS)
-
dc.relation.isbn
979-8-3503-7055-3
-
dc.relation.doi
10.1109/IOLTS60994.2024
-
dc.type.category
Full-Paper Contribution
-
tuw.booktitle
2024 IEEE 30th International Symposium on On-Line Testing and Robust System Design (IOLTS)
-
tuw.peerreviewed
true
-
tuw.relation.publisher
IEEE
-
tuw.researchTopic.id
I2
-
tuw.researchTopic.name
Computer Engineering and Software-Intensive Systems
-
tuw.researchTopic.value
100
-
tuw.publication.orgunit
E191-02 - Forschungsbereich Embedded Computing Systems
-
tuw.publication.orgunit
E056-15 - Fachbereich Resilient Embedded Systems
-
tuw.publication.orgunit
E056-17 - Fachbereich Trustworthy Autonomous Cyber-Physical Systems
-
tuw.publisher.doi
10.1109/IOLTS60994.2024.10616075
-
dc.description.numberOfPages
3
-
tuw.author.orcid
0000-0003-1805-750X
-
tuw.author.orcid
0000-0002-3847-1647
-
tuw.event.name
2024 IEEE 30th International Symposium on On-line Testing and Robust System Design (IOLTS)
en
tuw.event.startdate
03-07-2024
-
tuw.event.enddate
05-07-2024
-
tuw.event.online
On Site
-
tuw.event.type
Event for scientific audience
-
tuw.event.place
Rennes, Brittany
-
tuw.event.country
FR
-
tuw.event.presenter
Colucci, Alessio
-
wb.sciencebranch
Informatik
-
wb.sciencebranch
Elektrotechnik, Elektronik, Informationstechnik
-
wb.sciencebranch
Mathematik
-
wb.sciencebranch.oefos
1020
-
wb.sciencebranch.oefos
2020
-
wb.sciencebranch.oefos
1010
-
wb.sciencebranch.value
50
-
wb.sciencebranch.value
40
-
wb.sciencebranch.value
10
-
item.languageiso639-1
en
-
item.openairetype
conference paper
-
item.grantfulltext
none
-
item.fulltext
no Fulltext
-
item.cerifentitytype
Publications
-
item.openairecristype
http://purl.org/coar/resource_type/c_5794
-
crisitem.author.dept
E191-02 - Forschungsbereich Embedded Computing Systems
-
crisitem.author.dept
E191-02 - Forschungsbereich Embedded Computing Systems
-
crisitem.author.dept
E191-02 - Forschungsbereich Embedded Computing Systems