<div class="csl-bib-body">
<div class="csl-entry">Colucci, A., Steininger, A., & Shafique, M. (2024). SBanTEM: A Novel Methodology for Sparse Band Tensors as Soft-Error Mitigation in Sparse Convolutional Neural Networks. In <i>2024 IEEE 30th International Symposium on On-Line Testing and Robust System Design (IOLTS)</i>. 2024 IEEE 30th International Symposium on On-Line Testing and Robust System Design (IOLTS), Rennes, Brittany, France. IEEE. https://doi.org/10.1109/IOLTS60994.2024.10616070</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/208039
-
dc.description.abstract
Over the last two decades, Convolutional Neural Networks (CNNs) have become common in a wide variety of tasks, including safety-critical ones such as autonomous driving, leading to optimizations such as Sparse Convolutional Neural Networks (SparseCNNs). Scaling technologica nodes has led to an exponential increase in transient faults affecting the systems, generating critical soft errors. We introduce SBanTEM a novel methodology for employing sparse band tensors as soft-error mitigation in SparseCNNs. SBanTEM includes a novel mitigation technique, employing band tensors, as they do not require using indices for storing data. We employ progressive reduction of the bandwidth of the selected tensors, allowing the network to train in-between successive prunings, and compensat accuracy loss. Additionally, we implement a Genetic Algorithm (GA) to optimally select the tensors bandwidths in the network. We analyze the resilience of many state-of-the-art CNNs on multiple datasets, showin that resilience is much lower for SparseCNNs, and using SBanTEM makes them as resilient as standard CNNs. SBanTEM's code and result is available at github.com/Alexei95/SBanTEM to boost reproducibility and reusability of the implementation.
en
dc.language.iso
en
-
dc.subject
band matrix
en
dc.subject
deep neura networks
en
dc.subject
fault injection
en
dc.subject
fault tolerance
en
dc.subject
pruning
en
dc.subject
resilience
en
dc.subject
sparse
en
dc.title
SBanTEM: A Novel Methodology for Sparse Band Tensors as Soft-Error Mitigation in Sparse Convolutional Neural Networks
en
dc.type
Inproceedings
en
dc.type
Konferenzbeitrag
de
dc.relation.publication
2024 IEEE 30th International Symposium on On-Line Testing and Robust System Design (IOLTS)
-
dc.relation.isbn
979-8-3503-7055-3
-
dc.relation.doi
10.1109/IOLTS60994.2024
-
dc.type.category
Full-Paper Contribution
-
tuw.booktitle
2024 IEEE 30th International Symposium on On-Line Testing and Robust System Design (IOLTS)
-
tuw.peerreviewed
true
-
tuw.relation.publisher
IEEE
-
tuw.researchTopic.id
I2
-
tuw.researchTopic.name
Computer Engineering and Software-Intensive Systems
-
tuw.researchTopic.value
100
-
tuw.publication.orgunit
E191-02 - Forschungsbereich Embedded Computing Systems
-
tuw.publication.orgunit
E056-15 - Fachbereich Resilient Embedded Systems
-
tuw.publication.orgunit
E056-17 - Fachbereich Trustworthy Autonomous Cyber-Physical Systems
-
tuw.publisher.doi
10.1109/IOLTS60994.2024.10616070
-
dc.description.numberOfPages
3
-
tuw.author.orcid
0000-0003-1805-750X
-
tuw.author.orcid
0000-0002-3847-1647
-
tuw.event.name
2024 IEEE 30th International Symposium on On-Line Testing and Robust System Design (IOLTS)
en
tuw.event.startdate
03-07-2024
-
tuw.event.enddate
05-07-2024
-
tuw.event.online
On Site
-
tuw.event.type
Event for scientific audience
-
tuw.event.place
Rennes, Brittany
-
tuw.event.country
FR
-
tuw.event.presenter
Colucci, Alessio
-
wb.sciencebranch
Informatik
-
wb.sciencebranch
Elektrotechnik, Elektronik, Informationstechnik
-
wb.sciencebranch
Mathematik
-
wb.sciencebranch.oefos
1020
-
wb.sciencebranch.oefos
2020
-
wb.sciencebranch.oefos
1010
-
wb.sciencebranch.value
50
-
wb.sciencebranch.value
40
-
wb.sciencebranch.value
10
-
item.languageiso639-1
en
-
item.openairetype
conference paper
-
item.grantfulltext
none
-
item.fulltext
no Fulltext
-
item.cerifentitytype
Publications
-
item.openairecristype
http://purl.org/coar/resource_type/c_5794
-
crisitem.author.dept
E191-02 - Forschungsbereich Embedded Computing Systems
-
crisitem.author.dept
E191-02 - Forschungsbereich Embedded Computing Systems
-
crisitem.author.dept
E191-02 - Forschungsbereich Embedded Computing Systems