<div class="csl-bib-body">
<div class="csl-entry">Danilenka, A., Furutanpey, A., Casamayor Pujol, V., Sedlak, B., Lackinger, A., Ganzha, M., Paprzycki, M., & Dustdar, S. (2024). <i>Adaptive Active Inference Agents for Heterogeneous and Lifelong Federated Learning</i>. arXiv. https://doi.org/10.34726/8100</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/208042
-
dc.identifier.uri
https://doi.org/10.34726/8100
-
dc.description.abstract
Handling heterogeneity and unpredictability are two core problems in pervasive computing. The challenge is to seamlessly integrate devices with varying computational resources in a dynamic environment to form a cohesive system that can fulfill the needs of all participants. Existing work on systems that adapt to changing requirements typically focuses on optimizing individual variables or low-level Service Level Objectives (SLOs), such as constraining the usage of specific resources. While low-level control mechanisms permit fine-grained control over a system, they introduce considerable complexity, particularly in dynamic environments. To this end, we propose drawing from Active Inference (AIF), a neuroscientific framework for designing adaptive agents. Specifically, we introduce a conceptual agent for heterogeneous pervasive systems that permits setting global systems constraints as high-level SLOs. Instead of manually setting low-level SLOs, the system finds an equilibrium that can adapt to environmental changes. We demonstrate the viability of AIF agents with an extensive experiment design, using heterogeneous and lifelong federated learning as an application scenario. We conduct our experiments on a physical testbed of devices with different resource types and vendor specifications. The results provide convincing evidence that an AIF agent can adapt a system to environmental changes. In particular, the AIF agent can balance competing SLOs in resource heterogeneous environments to ensure up to 98% fulfillment rate.
en
dc.description.sponsorship
European Commission
-
dc.description.sponsorship
European Commission
-
dc.description.sponsorship
European Commission
-
dc.language.iso
en
-
dc.rights.uri
http://creativecommons.org/licenses/by/4.0/
-
dc.subject
Adaptive Computing
en
dc.subject
Service Level Objectives
en
dc.subject
Active Inference
en
dc.subject
Federated Learning
en
dc.subject
Edge Computing
en
dc.title
Adaptive Active Inference Agents for Heterogeneous and Lifelong Federated Learning
en
dc.type
Preprint
en
dc.type
Preprint
de
dc.rights.license
Creative Commons Namensnennung 4.0 International
de
dc.rights.license
Creative Commons Attribution 4.0 International
en
dc.identifier.doi
10.34726/8100
-
dc.identifier.arxiv
2410.09099
-
dc.contributor.affiliation
Pompeu Fabra University, Spain
-
dc.contributor.affiliation
Warsaw University of Technology, Poland
-
dc.contributor.affiliation
Polish Academy of Sciences, Poland
-
dc.relation.grantno
101135576
-
dc.relation.grantno
101079214
-
dc.relation.grantno
101070186
-
tuw.project.title
Intent-based data operation in the computing continuum
-
tuw.project.title
Twinning action for spreading excellence in Artificial Intelligence of Things
-
tuw.project.title
Trustworthy, Energy-Aware federated DAta Lakes along the Computing Continuum
Warsaw University of Technology within the Excellence Initiative: Research University (IDUB) programme
-
dc.description.sponsorshipexternal
Centre for Priority Research Area Artificial Intelligence and Robotics of Warsaw University of Technology within the Excellence Initiative: Research University (IDUB) programme
-
dc.description.sponsorshipexternal
Ayuda CNS2023-144359 financiada por MICIU/AEI/10.13039/501100011033 y por la Uni´on Europea NextGenerationEU/PRTR
-
tuw.publisher.server
arXiv
-
wb.sciencebranch
Informatik
-
wb.sciencebranch.oefos
1020
-
wb.sciencebranch.value
100
-
item.openairecristype
http://purl.org/coar/resource_type/c_816b
-
item.openairetype
preprint
-
item.cerifentitytype
Publications
-
item.fulltext
with Fulltext
-
item.openaccessfulltext
Open Access
-
item.languageiso639-1
en
-
item.mimetype
application/pdf
-
item.grantfulltext
open
-
crisitem.project.funder
European Commission
-
crisitem.project.funder
European Commission
-
crisitem.project.funder
European Commission
-
crisitem.project.grantno
101135576
-
crisitem.project.grantno
101079214
-
crisitem.project.grantno
101070186
-
crisitem.author.dept
E194-02 - Forschungsbereich Distributed Systems
-
crisitem.author.dept
Pompeu Fabra University, Spain
-
crisitem.author.dept
E194-02 - Forschungsbereich Distributed Systems
-
crisitem.author.dept
E194-02 - Forschungsbereich Distributed Systems
-
crisitem.author.dept
Warsaw University of Technology, Poland
-
crisitem.author.dept
Polish Academy of Sciences, Poland
-
crisitem.author.dept
E194-02 - Forschungsbereich Distributed Systems
-
crisitem.author.orcid
0000-0002-3080-0303
-
crisitem.author.orcid
0000-0001-5621-7899
-
crisitem.author.orcid
0009-0001-2365-8265
-
crisitem.author.orcid
0009-0006-2908-0528
-
crisitem.author.orcid
0000-0001-7714-4844
-
crisitem.author.orcid
0000-0002-8069-2152
-
crisitem.author.orcid
0000-0001-6872-8821
-
crisitem.author.parentorg
E194 - Institut für Information Systems Engineering
-
crisitem.author.parentorg
E194 - Institut für Information Systems Engineering
-
crisitem.author.parentorg
E194 - Institut für Information Systems Engineering
-
crisitem.author.parentorg
E194 - Institut für Information Systems Engineering