<div class="csl-bib-body">
<div class="csl-entry">Ehlers, H., Brich, N., Krone, M., Nöllenburg, M., Yu, J., Natsukawa, H., Yuan, X., & Wu, H.-Y. (2025). An introduction to and survey of biological network visualization. <i>COMPUTERS & GRAPHICS-UK</i>, <i>126</i>, Article 104115. https://doi.org/10.1016/j.cag.2024.104115</div>
</div>
-
dc.identifier.issn
0097-8493
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/208050
-
dc.description.abstract
Biological networks describe complex relationships in biological systems, which represent biological entities as vertices and their underlying connectivity as edges. Ideally, for a complete analysis of such systems, domain experts need to visually integrate multiple sources of heterogeneous data, and visually, as well as numerically, probe said data in order to explore or validate (mechanistic) hypotheses. Such visual analyses require the coming together of biological domain experts, bioinformaticians, as well as network scientists to create useful visualization tools. Owing to the underlying graph data becoming ever larger and more complex, the visual representation of such biological networks has become challenging in its own right. This introduction and survey aims to describe the current state of biological network visualization in order to identify scientific gaps for visualization experts, network scientists, bioinformaticians, and domain experts, such as biologists, or biochemists, alike. Specifically, we revisit the classic visualization pipeline, upon which we base this paper’s taxonomy and structure, which in turn forms the basis of our literature classification. This pipeline describes the process of visualizing data, starting with the raw data itself, through the construction of data tables, to the actual creation of visual structures and views, as a function of task-driven user interaction. Literature was systematically surveyed using API-driven querying where possible, and the collected papers were manually read and categorized based on the identified sub-components of this visualization pipeline’s individual steps. From this survey, we highlight a number of exemplary visualization tools from multiple biological sub-domains in order to explore how they adapt these discussed techniques and why. Additionally, this taxonomic classification of the collected set of papers allows us to identify existing gaps in biological network visualization practices. We finally conclude this report with a list of open challenges and potential research directions. Examples of such gaps include (i) the overabundance of visualization tools using schematic or straight-line node-link diagrams, despite the availability of powerful alternatives, or (ii) the lack of visualization tools that also integrate more advanced network analysis techniques beyond basic graph descriptive statistics.
en
dc.language.iso
en
-
dc.publisher
PERGAMON-ELSEVIER SCIENCE LTD
-
dc.relation.ispartof
COMPUTERS & GRAPHICS-UK
-
dc.subject
Network visualization
en
dc.subject
Visualization pipeline
en
dc.subject
Sensemaking loop
en
dc.subject
Visual analytics
en
dc.subject
Network analysis
en
dc.subject
Biological networks
en
dc.subject
State-of-the-art-report
en
dc.title
An introduction to and survey of biological network visualization
en
dc.type
Article
en
dc.type
Artikel
de
dc.contributor.affiliation
University of Tübingen, Germany
-
dc.contributor.affiliation
Stuttgart University of Applied Sciences, Germany
-
dc.contributor.affiliation
Peking University, China
-
dc.contributor.affiliation
Osaka Seikei University, Japan
-
dc.contributor.affiliation
Peking University, China
-
dc.type.category
Original Research Article
-
tuw.container.volume
126
-
tuw.journal.peerreviewed
true
-
tuw.peerreviewed
true
-
wb.publication.intCoWork
International Co-publication
-
tuw.researchTopic.id
I1
-
tuw.researchTopic.name
Logic and Computation
-
tuw.researchTopic.value
100
-
dcterms.isPartOf.title
COMPUTERS & GRAPHICS-UK
-
tuw.publication.orgunit
E193-02 - Forschungsbereich Computer Graphics
-
tuw.publication.orgunit
E192-01 - Forschungsbereich Algorithms and Complexity
-
tuw.publisher.doi
10.1016/j.cag.2024.104115
-
dc.date.onlinefirst
2024-11-23
-
dc.identifier.articleid
104115
-
dc.identifier.eissn
1873-7684
-
dc.description.numberOfPages
31
-
tuw.author.orcid
0000-0002-5994-1492
-
tuw.author.orcid
0000-0003-3175-0464
-
tuw.author.orcid
0000-0002-1445-7568
-
tuw.author.orcid
0000-0003-0454-3937
-
tuw.author.orcid
0000-0001-6754-7834
-
tuw.author.orcid
0000-0003-1028-0010
-
wb.sci
true
-
wb.sciencebranch
Informatik
-
wb.sciencebranch
Mathematik
-
wb.sciencebranch.oefos
1020
-
wb.sciencebranch.oefos
1010
-
wb.sciencebranch.value
90
-
wb.sciencebranch.value
10
-
item.languageiso639-1
en
-
item.openairetype
research article
-
item.grantfulltext
none
-
item.fulltext
no Fulltext
-
item.cerifentitytype
Publications
-
item.openairecristype
http://purl.org/coar/resource_type/c_2df8fbb1
-
crisitem.author.dept
E193-02 - Forschungsbereich Computer Graphics
-
crisitem.author.dept
University of Tübingen
-
crisitem.author.dept
Stuttgart University of Applied Sciences
-
crisitem.author.dept
E192-01 - Forschungsbereich Algorithms and Complexity
-
crisitem.author.dept
Peking University
-
crisitem.author.dept
Osaka Seikei University
-
crisitem.author.dept
Peking University
-
crisitem.author.dept
E193-02 - Forschungsbereich Computer Graphics
-
crisitem.author.orcid
0000-0002-5994-1492
-
crisitem.author.orcid
0000-0003-3175-0464
-
crisitem.author.orcid
0000-0002-1445-7568
-
crisitem.author.orcid
0000-0003-0454-3937
-
crisitem.author.orcid
0000-0001-6754-7834
-
crisitem.author.orcid
0000-0003-1028-0010
-
crisitem.author.parentorg
E193 - Institut für Visual Computing and Human-Centered Technology
-
crisitem.author.parentorg
E192 - Institut für Logic and Computation
-
crisitem.author.parentorg
E193 - Institut für Visual Computing and Human-Centered Technology