<div class="csl-bib-body">
<div class="csl-entry">Ojdanic, D., Naverschnigg, C., Sinn, A., & Schitter, G. (2023). Deep learning-based long-distance optical UAV detection: color versus grayscale. In Dr. M. Alam & V. Asari (Eds.), <i>Proceedings Volume 12527, Pattern Recognition and Tracking XXXIV</i>. https://doi.org/10.1117/12.2663318</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/208109
-
dc.description.abstract
This paper presents a comparison between grayscale and color based deep learning algorithms for long distance optical UAV detection using robotic telescope systems. Three deep learning object detection algorithms are trained with a custom dataset consisting of RGB images and the performance is evaluated against the same algorithms trained with the same dataset converted to grayscale. Network training from scratch and fine-tuning are evaluated. The results for all algorithms show that fine-tuning with RGB images maximizes the detection performance and scores about 5% better in terms of mean average precision (mAP(0.5)) compared to fine-tuning on grayscale images.
en
dc.description.sponsorship
FFG - Österr. Forschungsförderungs- gesellschaft mbH
-
dc.language.iso
en
-
dc.subject
color
en
dc.subject
deep learning
en
dc.subject
grayscale
en
dc.subject
UAV detection
en
dc.title
Deep learning-based long-distance optical UAV detection: color versus grayscale
en
dc.type
Inproceedings
en
dc.type
Konferenzbeitrag
de
dc.contributor.editoraffiliation
Texas A&M University – Kingsville, United States of America (the)
-
dc.contributor.editoraffiliation
University of Dayton, United States of America (the)
-
dc.relation.isbn
9781510661691
-
dc.relation.grantno
879716
-
dc.type.category
Full-Paper Contribution
-
tuw.booktitle
Proceedings Volume 12527, Pattern Recognition and Tracking XXXIV
-
tuw.container.volume
12527
-
tuw.project.title
Erkennung, Verfolgung und optische Identifikation von UAVs durch robotische Teleskopsysteme