<div class="csl-bib-body">
<div class="csl-entry">Rhomberg-Kauert, J., Dammert, L., Grömer, M., Pfennigbauer, M., & Mandlburger, G. (2024). Macrophyte detection with bathymetric LiDAR – Applications of high-dimensional data analysis for submerged ecosystems. <i>The International Hydrographic Review</i>, <i>30</i>(2), 98–115. https://doi.org/10.58440/ihr-30-2-a16</div>
</div>
-
dc.identifier.issn
0020-6946
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/208207
-
dc.description.abstract
Automatic detection and classification of point clouds is a research topic of wide interest, as manual annotation of individual points is time consuming and inefficient for large surveys. This also holds for the emerging field of submerged vegetation detection, surveyed by bathymetric LiDAR. In the point clouds generated, current best practices perform sub-optimally in extracting vegetation data. To date, only a modest number of methodologies have been proposed to overcome this problem and furthermore only briefly discuss their findings in an extensive evaluation with annotated data. In contrast to the domain of sonar, where the practice of feature selection and comparison to annotated data has been well established over the last decades. This study proposes a similar methodology based on high-dimensional data analysis and clustering that is commonly deployed in other fields of research. In addition to the method, two datasets are presented for a detailed comparison to manually annotated data, in which the method performed at a mean precision score of 0.70 to 0.86, for all manual annotations. This demonstrates that the method is able to detect aquatic vegetation based on its structural characteristics of the bathymetric LiDAR point cloud, yielding results that are comparable to those obtained through manual annotation. In conclusion, the method presents an alternative workflow to current best practices and improves automated vegetation detection through the application of high dimensional data analysis.
en
dc.language.iso
en
-
dc.publisher
International Hydrographic Organization
-
dc.relation.ispartof
The International Hydrographic Review
-
dc.subject
bathymetry
en
dc.subject
clustering
en
dc.subject
high-dimentsional data
en
dc.subject
LiDAR
en
dc.subject
point cloud processing
en
dc.subject
vegetation detection
en
dc.title
Macrophyte detection with bathymetric LiDAR – Applications of high-dimensional data analysis for submerged ecosystems
en
dc.type
Article
en
dc.type
Artikel
de
dc.contributor.affiliation
University of Graz, Austria
-
dc.description.startpage
98
-
dc.description.endpage
115
-
dc.type.category
Original Research Article
-
tuw.container.volume
30
-
tuw.container.issue
2
-
tuw.journal.peerreviewed
true
-
tuw.peerreviewed
true
-
tuw.researchTopic.id
E4
-
tuw.researchTopic.name
Environmental Monitoring and Climate Adaptation
-
tuw.researchTopic.value
100
-
dcterms.isPartOf.title
The International Hydrographic Review
-
tuw.publication.orgunit
E120-07 - Forschungsbereich Photogrammetrie
-
tuw.publication.orgunit
E120-05 - Forschungsbereich Ingenieurgeodäsie
-
tuw.publication.orgunit
E389 - Institute of Telecommunications
-
tuw.publisher.doi
10.58440/ihr-30-2-a16
-
dc.date.onlinefirst
2024-12-13
-
dc.description.numberOfPages
18
-
wb.sciencebranch
Geodäsie, Vermessungswesen
-
wb.sciencebranch
Informatik
-
wb.sciencebranch
Physische Geographie
-
wb.sciencebranch.oefos
2074
-
wb.sciencebranch.oefos
1020
-
wb.sciencebranch.oefos
1054
-
wb.sciencebranch.value
70
-
wb.sciencebranch.value
15
-
wb.sciencebranch.value
15
-
item.openairetype
research article
-
item.languageiso639-1
en
-
item.cerifentitytype
Publications
-
item.fulltext
no Fulltext
-
item.grantfulltext
none
-
item.openairecristype
http://purl.org/coar/resource_type/c_2df8fbb1
-
crisitem.author.dept
E120-07 - Forschungsbereich Photogrammetrie
-
crisitem.author.dept
E120-07 - Forschungsbereich Photogrammetrie
-
crisitem.author.dept
University of Graz
-
crisitem.author.dept
E389 - Institute of Telecommunications
-
crisitem.author.dept
E120-07 - Forschungsbereich Photogrammetrie
-
crisitem.author.parentorg
E120 - Department für Geodäsie und Geoinformation
-
crisitem.author.parentorg
E120 - Department für Geodäsie und Geoinformation
-
crisitem.author.parentorg
E350 - Fakultät für Elektrotechnik und Informationstechnik